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Abstract 
 
The Internet is constantly growing, providing a myriad of new services, both legitimate and malicious. Criminals take 
advantage of the scalable, distributed, and rather easily accessible naming, hosting and routing infrastructures of the 
Internet. As a result, the battle against malware is raging on multiple fronts: the endpoint, the network perimeter, and 
the application layer. The need for innovative measures to gain ground against the enemy has never been greater. 
 
In this paper, we present novel strategies to catch malware at the DNS and IP level, as well as our unique 3D 
visualization engine. We will describe the detection systems we built, and share several successful war stories about 
hunting down malware domains and associated rogue IP space. 
 
At the DNS level, we describe efficient methods for tracking fast flux botnets and describe a study we carried for 
several months of the Zeus fast flux proxy network. At the IP level, classical reputation methods assign 
"maliciousness" scores to IPs, BGP prefixes, or ASNs by merely counting domains and IPs. Our system takes an 
unconventional approach that combines two opposite, yet complementary views and leads to more effective 
predictive detections. 
 
On one hand, we abstract away from the ASN view. We build the AS graph and investigate its topology to uncover 
hotspots of malicious or suspicious activities and monitor our DNS traffic for new domains hosted on these malicious 
IP ranges. We will also describe a unique method of identifying seemingly autonomous networks that are actually 
operated by one organization, which helps further identify potentially malicious areas of the Internet. On the other 
hand, we examine a granularity finer than the BGP prefix. For this, we zero in on IP ranges re-allocated or re-
assigned to bad customers within large prefixes to host Exploit kit domains, browlock, and other attack types. 
 
We will present various techniques we devised to efficiently discover suspicious reserved ranges and sweep en 
masse for candidate suspicious IPs. Our system provides actionable intelligence and preemptively detects and 
blocks malicious IP infrastructures prior to, or immediately after some of them are used to wage malware campaigns, 
therefore decisively closing the detection gap. 
 
The discussion of these detection systems and "war stories" wouldn't be complete without a visualization engine that 
adequately displays the use cases and offers a graph navigation and investigation tool. Therefore, in this paper, we 
will also discuss our own 3D visualization engine, demonstrating the full process which transforms raw data into 
stunning 3D visuals. We will also present different techniques used to build and render large graph datasets: Force 
Directed algorithms accelerated on the GPU using OpenCL, 3D rendering and navigation using OpenGL ES, and 
GLSL Shaders. 
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Part 1: Catching Malware DNS-style 
 
In today’s cybercrime world, bad actors strive to keep their operations (spam, phishing, malware distribution, botnets, 
etc.) online at all times, and for that the hosting network infrastructure plays a crucial role. The domain name system 
(DNS) and IP hosting infrastructures are the foundations of the Internet, and they are equally used for legitimate and 
criminal activities alike. 
 
Botnets as proxy networks 
 
Botnets constitute a notable hosting and attack delivery infrastructure. As it is composed of a large collection of 
compromised machines that receive instructions from a command & control server, a botnet can be quite versatile. 
The bots can perform numerous malicious activities on demand, and therefore represent an all-purpose weapon for 
criminals.  
 
A prominent use of botnets is as proxy networks to shield the identity and location of malware CnCs during the 
communication between an infected host and the CnC. In this case, the proxy network can take the form of a fast flux 
service network [1]. Fast-flux service networks take advantage of DNS to redirect C&C connection attempts to a set 
of proxy nodes that are constantly shifting. These proxy nodes serve as intermediaries to relay information between 
infected hosts and the C&C component. A fast-flux service network is created by setting up a selection of domains to 
resolve to the IP addresses of a subset of available proxy nodes (bots). These IP addresses are then frequently 
changed to the IP addresses of new proxy nodes which is known as IP fluxing. This way, the proxy network provides 
an extra layer of evasion and protection for the actual malware CnCs. The communication between the infected hosts 
always goes through the fast flux proxy network to reach the malware backend CnCs. 
 
In general, botnet-based proxy networks can be used to serve malware pushed from CnCs down to newly infected 
hosts via Exploit kit attacks or spam attachments, or to push new payloads to already infected hosts, or to forward 
communication from infected clients to backend CnCs like in the case of Kelihos (fast flux botnet with TTL=0) and 
Zbot (fast flux botnet with a TTL=150). In this part, we will discuss a several months study we conducted on the Zbot 
proxy network. This network consists of a few tens of thousands of infected machines and has hosted over a 
thousand CnC domains. It has hosted CnCs for various malware families: Zeus variants, Asprox, and most recently 
the new Zeus GameOver variant. 
 
Zeus Crimeware 
 
The Zeus Crimeware kit is one of the most advanced toolkits used to generate effective and versatile malware 
payloads that facilitate criminal activities. The kit consists of the following main components: a control panel, config 
files (which hold the URLs for drop zones, extra payload, extra configs, and target websites of web injects), binary 
files, and a builder. The crimeware’s main goals are to steal financial data such as online bank account and credit 
card information, steal sensitive credentials, and perform web injects to hijack the victims’ sessions on websites of 
interest to the criminals (e.g. online banking websites). 
 
Zeus CnCs 
 
Zeus command and control domains can be hosted on different platforms: compromised sites, fast flux botnets, or 
bulletproof or free hosting providers [3]. Additionally, Zeus CnC domains can be used for three types of purposes: 
they can serve configuration files, binary files, or serve as drop zones. 
 
In this study, we focus on the fast flux botnet that hosts Zeus CnC domains and which we call the “zbot proxy 
network”. This proxy network hosts fast flux domains with a characteristic TTL of 150 seconds and is constituted of a 
few thousand infected machines. We use two methods to detect the fast flux domains hosted on this network: 
periodic Hadoop Pig jobs, and IP harvesting combined with filtering heuristics applied on our streaming authoritative 
DNS traffic.  
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For the first method, we run a periodic Pig job on our authoritative logs stored on HDFS where we retrieve domains 
with a TTL<=150. We filter out unwanted domains such as spam or legitimate domains, then build the bipartite graph 
of domains-IPs, and take the largest connected component. This heuristic extracts the zbot fast flux domains along 
with their resolving IPs from the portion of logs we processed. The IPs are appended to the pool of zbot IPs that is 
also used in the second method. 
 
For the second method, we incrementally build the list of confirmed zbot fast flux domains, continuously resolve them, 
and append the IPs to the pool of zbot IPs. At the same time, we tap into our streaming authoritative DNS traffic and 
extract any domain whose IP or name server IP is in the zbot IP pool. 
 
The combination of these two methods allows us to catch the bulk of new zbot fast flux domains that we see in our 
traffic. Using the authoritative DNS stream is faster than a DNSDB stored on Hadoop, as the traffic is coming live 
from a selection of our resolvers at a rate of hundreds to thousands of entries per second. A typical entry looks like: 
ASN, domain, 2LD, IP, NS_IP, timestamp, TTL, type. 
 
Zbot proxy network usage 
 
We recorded different uses of the fast flux domains riding on the zbot proxy network. One recorded use is as Zeus 
CnCs after infection via Magnitude EK. A second recorded use is as Kuluoz CnCs post-infection by different Exploit 
kits. In this case, various Exploit kits or malicious attachments lead to the dropping of the Kuluoz/Dofoil malware. The 
infected host becomes part of the Asprox botnet and phones to one or several of the fast flux domains. 
 
 
 

 
Figure 1. Infection vectors followed by beaconing to fast flux proxy networks. 

 
In the figure above, we show the different documented scenarios of Exploit kit attacks or malicious attachments 
leading to beaconing to generic zbot CnCs, Asprox CnCs, or Kelihos CnCs. These scenarios are differentiated with 
ET signatures. There are two main infection vectors: Exploit kit attacks via drive-by downloads or spam emails with 
embedded links leading to malware, or the malware dropper coming as attachment (fake Flash update) [4]. 
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HTTP Traffic URL Patterns 
 
Following the detection of the fast flux CnC domains using our described methods, we investigate the HTTP traffic 
directed to these domains by temporarily sinkholing them and checking VirusTotal and Zeustracker.abuse.ch 
databases. We notice that these domains are very versatile. Various malware families use them as CnCs: Zeus and 
three of its variants (Citadel, KINS, ICE IX) as well as Asprox and some other downloaders. They also served to host 
phishing sites and we recorded domains hosting Pony panels. This confirms the nature of the zbot fast flux botnet as 
a “service network” utilized for various purposes depending on clients’ needs. In the sections below, we show the 
detailed url patterns for the different categories of usage of the CnC domains. 
 
Zeus CnC traffic 
 
A Zeus CnC can serve 3 types of URLs: Config, Binary, or drop zone [3]. In the Table below, we show examples of 
Zeus CnC URLs that were recorded in traffic. 
 

Table 1. Sample Fast flux CnC domains used by Zeus and associated URL patterns. 
CnC domain Url path Url type 
azg.su /coivze7aip/modules/update.bin 

/coivze7aip/cde.php 
/coivze7aip/cde.php 

ConfigURL 
BinaryURL 
DropZone 

browsecheck.com /rest/main.bin 
/manage/webstat.php 

ConfigURL 
DropZone 

despww.su /3836bkuta3/modules/zte.bin 
/3836bkuta3/asdf.php 

ConfigURL 
DropZone 

dvs.qstatic.net /img/pixel.jpg 
/img/mnn2.exe 
/img/rotator.php 

ConfigURL 
BinaryURL 
DropZone 

googleupd.com /api/main.bin ConfigURL 
reportonh.com /api/main.bin 

/pack32/sysconf.exe 
/manage/webstat.php 

ConfigURL 
BinaryURL 
DropZone 

seorubl.in /forum/popap1.jpg 
/forum/explorer.exe 
/forum/index.php/gate.php 

ConfigURL 
BinaryURL 
DropZone 

servmill.com /manage/mailo.php DropZone 
systemork.com /api/main.bin ConfigURL 
sytemnr.com /api/main.bin 

/pack32/sysconf.exe 
/manage/webstat.php 

ConfigURL 
BinaryURL 
DropZone 

vasilyaalibaba.com /images/up.jpg ConfigURL 
veloinsurances.com /images/logo_sav.jpg ConfigURL 
vhsonline.net /pix.jpg ConfigURL 
vozmusa.biz /healer/file.php 

/healer/gate.php 
ConfigURL 
DropZone 
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Citadel CnC traffic 
 

Table 2. Sample Fast flux CnC domains used by Citadel and associated URL patterns. 
CnC domain Url path Url type 
alremi.ru /images/images/amidstplenty/therexone/ledatic/file.php 

/images/images/amidstplenty/therexone/ledatic/e75.php 
ConfigURL 
DropZone 

anafis.ru /images/kenn/eddy/file.php ConfigURL 
astrophiscinam.com /flashcheck/file.php ConfigURL 
barakos.ru /images/images/amidstplenty/therexone/ledaticmn/file.php 

/images/images/amidstplenty/therexone/ledaticmn/e75.php 
ConfigURL 
DropZone 

emonn.ru /images/file.php 
/images/mon.php 

ConfigURL 
DropZone 

etot.su /lifeisgood/IcoqW4all.php DropZone 
hotbird.su /newadmin/file.php ConfigURL 
kaneaccess.ru /images/images/amidstplenty/therexone/ledatic/file.php 

/images/images/amidstplenty/therexone/ledatic/e75.php 
ConfigURL 
DropZone 

lundu.ru /tri4ngl3z/0v0x0/file.php ConfigURL 
m9a.ru /images/images/amidstplenty/therexone/ledatic/file.php 

/images/images/amidstplenty/therexone/ledatic/e75.php 
ConfigURL 
DropZone 

p7x.ru /CyberCartel1/file.php 
/CyberCartel1/gate.php 

ConfigURL 
DropZone 

panag.ru /syst3mz/min-us/file.php 
/syst3mz/min-us/x!!x.php 

ConfigURL 
DropZone 

skinflexpro.eu /treatment/53663675/wp-config.php 
/treatment/53663675/wp-comments-post.php 

ConfigURL 
DropZone 

verlo.ru /syst3mz/min-us/file.php 
/syst3mz/min-us/x!!x.php 

ConfigURL 
DropZone 

volkojpanula.pw /laguna/tein-industry/wp-signup.php 
/laguna/tein-industry/wp-login.php 

ConfigURL 
DropZone 

workflowhardware.com /flashcheck/file.php ConfigURL 
yaler.ru /tim3r/sw33t/file.php ConfigURL 
 
KINS and ICE IX CnC traffic 
 

Table 3. Sample Fast flux CnC domains used by KINS ans ICE IX and associated URL patterns. 
CnC domain Url path Url type 
construction89.ru /spirit.jpg 

/qw.exe 
/var/czen.php 

ConfigURL 
BinaryURL 
DropZone 

francejustel.ru /mail/hi.jpg ConfigURL 
newromentthere.ru /123.jpg 

/g.exe 
/img/pic.php 

ConfigURL 
BinaryURL 
DropZone 

orbitmanes.ru /sprit.jpg 
/01.exe 
/var/hy.php 

ConfigURL 
BinaryURL 
DropZone 

reznormakro.su /winconf/kernl.bin 
/manage/webstat.php 

ConfigURL 
DropZone 
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Phishing traffic 
 

Table 4. Sample Fast flux domains for phishing sites and associated URL patterns. 
Domain Known Url path 
amazon.de.k
unde-
secure.com 

/kunden_security/MDUuMjguMTQ%3D/4161/gp/newLogin/B007HCCOD0?charset.set=UTF&IP.hilfe
=ID00320070.uberpruf28476660/ 

httpsj.org /ap/deutschland/kunde 
/favicon.ico 

httpss.biz /sicherlich/deu/kunde 
 
Asprox CnC traffic 
 
The zbot fastflux domains are also used as CnCs for the Asprox botnet. After a machine is infected via Exploit kit 
attacks or malicious spam attachments (Figure 1), it performs multiple Asprox type callbacks to a selection of the fast 
flux domains then follows with clickfraud traffic. In the Table below, we show sample domains used as CnCs (some 
are live at the moment of this writing), the associated HTTP methods and URL patterns and the Emerging Threats 
alerts they trigger. 
 

Table 5. Sample Fast flux CnC domains used by Asprox and associated URL patterns and ET alerts. 

ET alert Domain HTTP method 

ET TROJAN 
W32/Asprox.ClickFraudBot CnC 
Beacon 

defie-guret.su 
harm-causer.com 
joye-luck.com 
joye-luck.su 
molinaderrec.com 
pg-free.com 
vision-vaper.su 

GET /b/eve/ 

 bang-power.su 
cherry-white.com 
defie-guret.su 
grade-well.com 
harm-causer.com 
joye-luck.com 
joye-luck.su 
molinaderrec.com 
oak-cured.com 
original-lot.com 
pg-free.com 
valoherusn.su 
vision-vaper.su 

GET /b/letr/ 

 biobetic-new.com 
carbiginer.com 
carbon-flx.su 
come-passere.com 
dialog-pow.com 
gummiringes.com 
head-pcs.com 
history-later.su 

GET /b/shoe/ 
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lare-funer.com 
mitger-qaser.com 
mix-juert.com 
older-hiuwm.com 
preluner-ter.com 
unuse-bubler.com 
valoherusn.com 
zemmes-gimbl.com 

ET TROJAN 
W32/Asprox.ClickFraudBot POST 
CnC Beacon 

apple-greens.com 
bang-power.su 
cherry-white.com 
defie-guret.su 
futere-poss.com 
garanering.su 
grade-well.com 
harm-causer.com 
hefu-juder.com 
innovation-citys.com 
jogurt-jetr.com 
joye-luck.com 
joye-luck.su 
juice-from.com 
molinaderrec.com 
nanoteches.com 
oak-cured.com 
on-bend.com 
original-lot.com 
pg-free.com 
ray-green.ru 
shark-yope.su 
supra-onfert.com 
taiborucheng.com 
terminus-hls.su 
trendf-news.ru 
tundra-red.com 
valoherusn.su 
vaping-qasdir.su 
vision-vaper.su 
 

POST /b/opt/ 

 apple-greens.com 
cherry-white.com 
defie-guret.su 
garanering.su 
grade-well.com 
harm-causer.com 
joye-luck.com 
joye-luck.su 
molinaderrec.com 
oak-cured.com 
original-lot.com 
pg-free.com 

POST /b/req/ 
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supra-onfert.com 
taiborucheng.com 
valoherusn.su 
vision-vaper.su 

 
Notice that in the case of the URL patterns: /b/eve/, /b/letr/, /b/opt/ and /b/req/, they are followed by a 12 2-byte 
hexadecimal string. For example: 
http://vision-vaper.su/b/eve/1f40f89ea1eebf47748490eb 
http://grade-well.com/b/letr/7165F757DAA94FE2CD116CC4 
http://hefu-juder.com/b/opt/17D2BCDADA720FE35C6F00F1 
http://joye-luck.com/b/req/648EEF9F6EDBDEE2E5E7F800 
 
Other traffic patterns 
 
We list observed URL patterns used for other purposes: 
 
Beaconing and announcing version, make, OS 
GET /1/?uid=17428742&ver=1.14&mk=bb3b62&os=WinXP&rs=adm&c=1&rq=0 
with several occurring OS versions: 
os=S2000 
os=Win07 
os=Win_V 
os=WinXP 
os=Win08 
 
Getting binaries and configs 
azg.su, GET /coivze7aip/modules/bot.exe 
tundra-tennes.com, GET /infodata/soft32.dll 
tundra-tennes.com, GET /info-data/soft32.dll 
bee-pass.com, GET /info/soft32.dll 
 
quarante-ml.com, GET /nivoslider/jquery/ 
quarante-ml.com, GET /nivoslider98.45/ajax/ 
quarante-ml.com, GET /nivoslider98.45/jquery/ 
tundra-tennes.com, GET /nivoslider/ajax/ 
 
Pony panel hosted on zbot proxy network 
 
While investigating the zbot fast flux domains, we came across one that was hosting a panel for the Pony malware 
(botnet). As Figure 2 shows, the panel was hosted on the domain marmedladkos.com: 
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Figure 2. Pony panel on marmedladkos.com. 

 
Pony 1.9 was leaked in late 2012 to Trojan Forge. The malware is an infostealer identified by AV vendors as 
Win32/Fareit. It consists of a botnet controller via a panel, has features for user management, logging and statistics 
via a database. 

 
Figure 3. Pony features as advertised on Forums. 
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Figure 4. Detection of Pony by AV vendors as advertised in Forums. 

 
The Pony payload is commonly delivered via Exploit kit attacks or attachments in spam emails. In the table below, we 
show a few folders on the panel site and their functionality. It is notable that the character set cp1251 characteristic of 
Cyrillic scripts is used everywhere on the site and in config.php, the variable date_default_timezone_set is set to 
(‘Europe/Moscow’) which would be an indication about the origin country of the authors or users of the panel. 
 

Table 6. Folders on panel site and functionalities. 
Path on site Function 

p/Panel.zip controlling php scripts 

p/includes/design/images/modules/* images for each zeus plugin supported/tracked (Figure 
ww) 

p/includes/password_modules.php contains array with all software it tries to steal 
credentials for (Figure ee) 

p/includes/database.php contains db schema and accessors 
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Figure 5. Images for supported plugins. 

 

 
Figure 6. List of applications stored in the Panel db of which Pony steals the passwords. 
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Figure 7. db schema in database.php. 

 
Furthermore, we searched on Google for certain strings from the Pony panel website and we found several more 
sites with open panels with some sites hosting other malware payload. One Example of such site is shown in the 
figure below:  
 

 
Figure 8. Open panel with malware payload. 

 
The file DC.exe is an Andromeda malware sample as the below VT report shows: 
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Figure 9. VirusTotal’s detection results of the sample discovered on the panel site. 
 
In the table below, we show some of the open Pony panels we discovered from the initial one. These are not hosted 
on the zbot fast flux domains though. 
 

Table 7. Additional discovered panels. 
Open Panels 

epvpcash.net16.net/Panel/temp/ 
hgfhgfhgfhfg.net/pony/temp/ 
http://pantamati.com/dream/Panel/temp/ 
http://pantamati.com/wall/Panel/temp/ 
mastermetr.ru/steal/Panel/temp/ 
microsoft.blg.lt/q/temp/ 
santeol.su/p/temp/ 
terra-araucania.cl/pooo/temp/ 
thinswares.com/panel/temp/ 
www.broomeron.com/pn2/temp/ 
www.kimclo.com/cli/temp/ 
www.sumdfase2.net/adm/temp/ 
www.tripplem2.com/images/money/temp/ 
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Top Level Domain distribution of the zbot fast flux domains 
 
In the Figure below, we show the TLD distribution of a 900+ sample of zbot fast flux CnC domains. It is clear that .su 
and .ru are the most abused ccTLDs followed by the generic .com, .net. 
 

 
Figure 10. TLD distribution of zbot fast flux CnC domains. 
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Proxy network country distribution 
 
We take a sample of 170,000+ IPs of the zbot proxy network and show in the figures below the top hosting countries. 
We see a high presence of infected machines acting as hosting bots in Russia, Ukraine and Turkey. 
 

 
Figure 11. Top hosting countries of zbot proxy network IPs. 

 

 
Figure 12. Country distribution of zbot proxy network IPs on world map. 
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Country distribution of clients beaconing to CnCs 
 
We collected the client IPs that looked up the fast flux CnC domains for a period of 24 hours. The figure below shows 
the country distribution. A high volume of lookups comes from the US, which can be caused by targeted US victims. 
 

 
Figure 13. Top countries of client IPs looking up zbot fast flux domains for 24 hours. 

 

 
Figure 14. Country distribution of client IPs looking up zbot fast flux domains. 
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CnC domains and related malware samples 
 
We took a sample of 337 fast flux domains hosted on the zbot proxy network and identified 208 different samples 
(unique sha256) that have communicated with the CnCs. The notable top observed samples communicating with the 
CnC domains are: 
Trojan[Spy]/Win32.Zbot 
TrojanDownloader:Win32/Upatre 
 
Notice that Upatre has served as a downloader for Zeus GameOver and has been recorded as being sent as 
attachment in spam emails delivered by the Cutwail botnet. 
 
Part 2: Catching Malware IP-style 
 
Classical reputation systems used for network-level threat detection assign scores to IPs, BGP prefixes and ASNs 
based on counting the volume of hosted malicious domains or IPs. In this study, our goal is to assess malicious IP 
ranges in certain ASNs from a new perspective. We look beyond the simple counting of the number of bad domains 
and IPs hosted on prefixes of an ASN, by exploring the topology of the AS graph, and looking at a smaller granularity 
than the BGP prefix (sub-allocated ranges within BGP prefixes).  We will also present a unique approach for finding 
similar prefixes and autonomous systems that are related to the network hosting malicious software. This will help 
identify more networks and hosts that are already high risk or will be in the near future. 
 
Previous research has been conducted on exploring malicious ASNs. For example, in [5], B. Stone-Gross et al. 
assign scores to rogue ASNs based on the amount of events involving hosts engaged in phishing, spamming, hosting 
drive-by download malware, or botnet traffic. In [6] and [7], the authors use visualization to track security incidents 
and malware events drawn from blacklist databases, and [8] explores ASNs providing transit for malware ASNs. 
 
ASN GRAPH 
 
An Autonomous System Number (ASN) identifies every globally routable network on the Internet. An Autonomous 
System (AS) represents a collection of IPv4 and IPv6 network prefixes administered by the same entity and sharing a 
common routing policy. In practice, an AS announces the prefixes under its authority or on behalf of their customers 
to its upstream providers and peer ASNs. The routers that receive these updates will use them to update their routing 
tables, which are used to make routing decisions. Depending on their policy will propagate the announcement to their 
peers and providers.   
 
The BGP table is the accumulation of all announced prefixes with their reachability information (AS paths). An AS 
path is a sequence of ASNs through which an announced prefix can be reached [9]. The BGP table is not only 
important for packet forwarding and loop detection on every Internet router, it is also very useful to study the evolution 
of the Internet from a topology and security threat perspective. For that, we need to build an AS graph which 
represents the interconnections between peering ASNs. 
 
In this study, we built an AS graph using publicly available data sources. Our primary source is the RouteViews data 
from University of Oregon [10], which provides a global BGP data by collecting BGP, updates and dumps from 
hundreds of Autonomous Systems worldwide. For our measurements we augmented our dataset with BGP data from 
all the routers we operate in the OpenDNS global network of 23 data centers.  
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Figure 15. RouteViews website. 

 
Other valuable data sources that are useful for studying the IP, BGP prefix and ASN landscapes are the CIDR report 
[11] and Hurricane Electric Internet Services website [12]. 
 
BUILDING THE ASN GRAPH 
 
The BGP data is collected in MRT format as described in rfc6396.  An example MRT entry in text format looks like 
this: 
 
TABLE_DUMP2|1392422403|B|96.4.0.55|11686|67.215.94.0/24|11686 4436 2914 36692|IGP|96.4.0.55|0|0||NAG|| 
 
We mark the fields that are of interest to us in red. In this entry, 67.215.94.0/24 is an example network prefix, and 
11686 4436 2914 36692 is the associated AS path. The ASN that appears at the end of the AS is the origin ASN of 
the prefix. In this case AS 36692 is originating the prefix, the origin AS is typically the owner of the prefix or 
announcing it on behalf of their customer. 
 
The AS path reveals how the most right AS reaches the prefix announced by the most left, the origin, AS. In this 
example it shows that AS 11686 relies on AS 4436, who then relies on 2914 to reach 36692.  Not only does the AS 
path reveal useful topology information, it can also be used to determine business relationship between each of the 
ASNs. For example in this case it’s likely that 36692 (OpenDNS) is a customer of 2914 (NTT America). 
 
As described above, we will use the AS path data to build a directed graph, where an ASN is denoted by a node and 
there is a directed edge between an ASN and every one of its upstream ASNs. For example, in the BGP table entry 
above, 36692 is the origin ASN for 67.215.94.0/24, and 2914 is an upstream ASN of 36692 (the last ASN before 
reaching the origin ASN when packets are traveling towards an IP in the origin ASN), therefore that entry can be 
graphically represented as follows: 
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Figure 16. Graph representation of an entry of the BGP table. 

 
An alternative method to build the AS graph is to use the entire AS path on every prefix entry of the BGP table. In this 
case, from the example above, we can build the following edges in the graph:  36692->2914, 2914->4436, 4436-
>11686. The AS graph is built by parsing the BGP table line by line. Since many ASNs announce more than one 
prefix and we have data from hundreds of viewpoints on the Internet, this provides us with hundreds of paths to a 
single Origin AS. By assigning weights to each edge we can predict the usage of edge. 
 
In the directed AS graph, an AS node can have incoming and/or outgoing edges. The outgoing edges point to 
upstream ASNs and incoming edges originate from downstream ASNs. Below, we define a few terms describing the 
AS graph nodes from a directed graph topological perspective [13]. 
 
A source ASN is an ASN that has only outgoing edges and no incoming edges, i.e. the ASN has only upstream ASNs 
that it relies upon for connectivity and for propagating its prefix announcements. A leaf ASN is a special case where 
an ASN has a single outgoing edge and no incoming edge. This is often described as “stub” ASN in the BGP routing 
terminology. 
 
We define a set of ASNs that are source ASNs (or leaves) and who share the same parent(s) (upstream ASNs) as 
sibling ASNs. For clarity, we will use the more intuitive term “peripheral” ASNs to denote source ASNs for the 
remainder of this paper. 
 
The BGP table/ASN graph is a dynamic entity and always changing as new prefixes are announced, old prefixes are 
withdrawn, new ASNs are introduced and start advertising prefixes, while others cease to exist and withdraw all their 
prefixes. Most common changes are probably new AS relations, new peers or previously unseen relations.  
This dynamic state can be the result of multiple factors: intentional technical and business decisions, human errors, 
hardware faults, route hijacking, etc. By parsing the entries of the BGP table, we can extract two types of useful data: 
the upstream and downstream ASNs of every ASN, and IP to ASN maps (via prefix to ASN mapping). For this, we 
can load the prefix and the origin ASN data into a radix tree. With the radix tree, (given an IP as input) we can quickly 
find the best matching prefix, and consequently, matching ASN. 
 
Alternatives are to use services like BGPmon.net (e.g whois -h whois.bgpmon.net 8.8.8.8), Team Cymru IP to ASN 
mapping [14], GeoIPASNum.dat from maxmind [15], or http://ipinfo.io/ (e.g. curl ipinfo.io/8.8.8.8/org returns the AS 
number and AS name of Google Inc.). In this study, we discuss interesting patterns in the AS graph topology – 
typically, suspicious peripheral ASNs that are siblings, i.e., they share common parents (upstream ASNs) in the AS 
graph. By clustering peripheral nodes in the AS graph by country, we found that certain peripheral sibling ASNs in a 
few countries have been delivering similar suspicious campaigns. 
 
 
 



20 

USE CASE 1: SUSPICIOUS SIBLING PERIPHERAL ASNs 
 
During manual investigations of suspicious domains and IPs that we detected in our traffic, we observed several 
cases of sibling peripheral ASNs that are hosting similar malware payloads. In this section, we will describe one such 
use case. 

 
Figure 17. Malicious ASN subgraph. 

 
In the Figure above, we show the snapshot of a suspicious ASN subgraph taken on January 8th, 2014, consisting of 
10 sibling peripheral ASNs (57604, 8287, 50896, 49236, 29004, 45020, 44093, 48949, 49720, 50818) sharing 2 
upstream ASNs (48361 and 31500). We color the ASNs that were hosting malicious payloads in red. The malicious 
payload is identified by some AVs as Trojan-Downloader.Win32.Ldmon.A [16][17] and described as a Trickler [18]. 
Notice that most of these peripheral ASNs are small scale with one single prefix as Table 5 shows: 
 

Table 8. Sibling peripheral ASNs prefixes. 
ASN No of prefixes Prefixes 

57604 1 91.233.89.0/24 

8287 3 91.213.72.0/24 
91.213.93.0/24 
91.217.162.0/24 

50896 5 195.78.108.0/23 
91.198.127.0/24 
91.200.164.0/22 
91.201.124.0/22 
91.216.3.0/24 

49236 1 62.122.72.0/23 

29004 1 195.39.252.0/23 

45020 1 194.29.185.0/24 

44093 1 193.243.166.0/24 

48949 1 95.215.140.0/22 

49720 1 194.242.2.0/23 

50818 1 194.126.251.0/24 
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Figure 18. Malicious ASN subgraph after it evolved 6 weeks later. 

 
In Figure 18, we show the same subgraph 6 weeks later, on February 21st. Notice the change in subgraph topology: 
more leaves started hosting the same suspicious payloads (via new resolving domains or directly on the IPs). 
Additionally, AS31500 detached itself from the leaves by ceasing to forward their prefix announcements. 
 
We observed that a large pool of contiguous IPs in /23 or /24 prefixes of these ASNs were hosting the same 
aforementioned type of payload. In most cases, the payload URLs were live on the entire range of IPs before any 
domains were hosted on them. Furthermore, the IPs were set up with the same server infrastructure. For instance, 
we took a random sample of 160 live IPs in this subgraph. 
 
In this sample, 50 IPs had a similar nmap fingerprint: 
 
22/tcp   open  ssh        OpenSSH 6.2_hpn13v11 (FreeBSD 20130515; protocol 2.0) 
8080/tcp open  http-proxy 3Proxy http proxy 
Service Info: OS: FreeBSD 
 
and 108 IPs shared the following fingerprint: 
22/tcp open  ssh     OpenSSH 5.3 (protocol 1.99) 
80/tcp open  http? 
 
In total, this subgraph featured 3100+ malware domains on 1020+ malware hosting IPs, and it is clear this IP 
infrastructure across multiple ASNs was set up in bulk and in advance to deliver the same rogue campaign [17]. 
 
USE CASE 2: Detecting sibling Autonomous systems by looking at BGP outages 
 
In the previous section we described sibling autonomous systems are one ore more Autonomous systems that are 
under control by the same organization and possibly share the same infrastructure.  One way to find these sibling 
Autonomous systems is to look at the upstream relations as typically all siblings share the same upstream 
provider(s).  The problem with this approach is that it will not always work as expected. For example some of the 
larger service providers such as Level3, NTT, GTT, etc., have many customers located throughout the world so by 
looking only at the common upstream providers won’t provide us with enough granular information to correctly 
determine siblings. 
 
Since the sibling networks we are interested in are those that are under the control of one entity and often colocate in 
the same facilities and could even share hardware, we could at least search for risk sharing properties. The next 
section describes a new novel approach of detecting sibling ASNs with a high degree of certainty. 
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Using BGP outages to detect sibling Autonomous systems. 
 
BGP, the routing protocol used on the Internet, uses primarily two types of message to advertise network reachability 
information: update messages to announce a new path for one or more prefixes, and withdrawal messages to inform 
BGP speakers that a certain prefix can no longer be reached. 
 
When looking for BGP withdrawal messages, and the frequency of these withdrawals for a certain prefix, we can 
detect global outages for the prefix. For example, when a large number of BGP speakers see a BGP withdrawal 
message for 208.67.222.0/24 we can assume that the prefix is no longer reachable, which means there would be an 
outage and the hosts in this network would be unreachable.  The next step is to look for new BGP update messages 
that provide a new path for 208.67.222.0/24, indicating the prefix is reachable again. With this data, we know exactly 
how long a prefix was unreachable. 
 
For this research project, our hypothesis was that sibling autonomous systems are very closely related and often 
share the same servers, hardware, collocation facilities and Internet service providers.  To test this hypothesis we 
look at the outage pattern for Autonomous System, and find Autonomous Systems that have the exact same outage 
pattern, i.e. the exact same outage start and stop time for one or more of prefixes in that AS. 
 
To test this hypothesis we partnered with BGPmon.net, a BGP monitoring service. Using their BGP outage detection 
system and the historical outage data collected over the last few years, we compared outages for different 
Autonomous systems and tested our hypothesis. 
 
This approach is unique as it provides more granular insight into the relationships between Autonomous systems as 
compared to looking at just peering relationships. This approach results in a set of Autonomous systems that share, 
with a high degree of certainty, shared risk–which means they are likely located in close proximity of each other.  The 
same could in theory be achieved by active ping or traceroute measurements, however in practice it’s impossible to 
scale this to every possible network (500,000 prefixes) with the same amount of time granularity. So by leveraging 
the routing control protocol for the Internet, we can scale this much more effectively and operate in stealth mode for 
both IPv4 and Ipv6. 
 
Illustrative Example 
 
Using the method described above we start searching for prefixes and their corresponding autonomous systems with 
similar outages. We looked at outages where the start and end time of the outage was the same as the outage for AS 
we provided as input. As a second heuristic, we only looked at Autonomous systems that had 3 or more similar 
outages. 
 
Just as the example in the previous sections, we will focus on the potential siblings for the following Autonomous 
systems: 57604, 8287, 50896, 49236, 29004, 45020, 44093, 48949, 49720, and 50818. We looked at the outage 
data between June 1st, 2013 and June 1st, 2014. 
 
In this example we will focus on AS57604 (PE Ivanova Yuliya Geraldovna), which as can be seen in Figure 18, 
receives transit exclusively from 48361 and has a number of sibling Autonomous Systems. We’ll look at one of the 
siblings, AS29004 and compare the outages detected for both siblings as well as the upstream provider AS48361. 
The table below compares a subset of the outages for the three networks between June 1st, 2013 and October 1st, 
2013. The outage table shows there are eighteen unique events where AS57604 became unreachable for at least 60 
seconds. Its sibling AS29004 has the exact same outage pattern. The upstream network for both of these networks, 
AS48361, had only one outage on August 31st - this outage also affected both of the downstream networks. 
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Table 9. List of outages. 

ISP 48361 AS57604 91.233.89.0/24 AS29004 195.39.252.0/23 

no outage 
down for 35 minutes 2013-07-12 
18:53 - 2013-07-12 19:28 

down for 36 minutes 2013-07-12 18:53 
- 2013-07-12 19:29 

no outage 
down for 497 minutes 2013-07-12 
21:33 - 2013-07-13 05:50 

down for 497 minutes 2013-07-12 
21:33 - 2013-07-13 05:50 

no outage 
down for 479 minutes 2013-07-22 
21:57 - 2013-07-23 05:56 

down for 479 minutes 2013-07-22 
21:57 - 2013-07-23 05:56 

no outage 
down for 33 minutes 2013-07-23 
18:51 - 2013-07-23 19:24 

down for 33 minutes 2013-07-23 18:51 
- 2013-07-23 19:24 

no outage 
down for 63 minutes 2013-07-29 
04:54 - 2013-07-29 05:57 

down for 63 minutes 2013-07-29 04:54 
- 2013-07-29 05:57 

no outage 
down for 155 minutes 2013-07-31 
22:37 - 2013-08-01 01:12 

down for 155 minutes 2013-07-31 
22:37 - 2013-08-01 01:12 

no outage 
down for 6 minutes 2013-08-01 03:00 
- 2013-08-01 03:06 

down for 6 minutes 2013-08-01 03:00 - 
2013-08-01 03:06 

no outage 
down for 7 minutes 2013-08-05 18:51 
- 2013-08-05 18:58 

own for 7 minutes 2013-08-05 18:51 - 
2013-08-05 18:58 

no outage 
down for 8 minutes 2013-08-09 21:01 
- 2013-08-09 21:09 

down for 8 minutes 2013-08-09 21:01 - 
2013-08-09 21:09 

no outage 
down for 13 minutes 2013-08-12 
08:05 - 2013-08-12 08:18 

down for 13 minutes 2013-08-12 08:05 
- 2013-08-12 08:18 

no outage 
down for 237 minutes 2013-08-15 
10:15 - 2013-08-15 14:12 

down for 237 minutes 2013-08-15 
10:15 - 2013-08-15 14:12 

no outage 
down for 520 minutes 2013-08-19 
21:26 - 2013-08-20 06:06 

down for 520 minutes 2013-08-19 
21:26 - 2013-08-20 06:06 

down for 11 minutes 2013-08-
31 18:39 - 2013-08-31 18:50 

down for 11 minutes 2013-08-31 
18:39 - 2013-08-31 18:50 

down for 11 minutes 2013-08-31 18:39 
- 2013-08-31 18:50 

no outage 
down for 11 minutes 2013-09-12 
04:33 - 2013-09-12 04:44 

down for 11 minutes 2013-09-12 04:33 
- 2013-09-12 04:44 

no outage 
down for 12 minutes 2013-09-12 
10:33 - 2013-09-12 10:45 

down for 12 minutes 2013-09-12 10:33 
- 2013-09-12 10:45 

no outage 
down for 86 minutes 2013-09-24 
08:02 - 2013-09-24 09:28 

down for 86 minutes 2013-09-24 08:02 
- 2013-09-24 09:28 

no outage 
down for 46 minutes 2013-09-26 
12:36 - 2013-09-26 13:22 

down for 46 minutes 2013-09-26 12:36 
- 2013-09-26 13:22 

no outage 
down for 46 minutes 2013-09-28 
16:19 - 2013-09-28 17:05 

down for 46 minutes 2013-09-28 16:19 
- 2013-09-28 17:05 

 
The fact that there are so many overlapping outages between AS57604 and AS29004 is unique and further proves 
there is a close relationship between these two sibling autonomous systems listed earlier. The table below lists all 
overlapping outages between each of the sibling autonomous systems as well as the upstream provider AS48361. 
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Table 10. Overlapping outages between sibling ASNs. 
 57604 8287 50896 49236 29004 45020 44093 48949 49720 50818 48361 
57604 x 20 17 12 22 16 11 24 20 13 5 
8287 20 x 41 15 17 17 15 18 18 15 5 
50896 17 41 x 17 16 17 18 19 16 18 7 
49236 12 15 17 x 8 15 13 8 12 17 3 
29004 22 17 16 8 x 12 22 28 18 9 6 
45020 16 17 17 15 12 x 12 12 12 15 4 
44093 11 15 18 13 22 12 x 16 10 13 6 
48949 24 18 19 8 28 12 16 x 20 9 8 
49720 20 18 16 12 18 12 10 20 x 10 4 
50818 13 15 18 17 9 15 13 9 10 x 4 
48361 5 5 7 3 6 4 6 8 4 4 x 

 
Looking at the results in the table above it is clear that there is a high degree of duplicate outages between all sibling 
Autonomous Systems and to some degree between the sibling Networks hosting the malware and the upstream 
AS48361. 
 
When correlating the outage results with the earlier results in use case 1, we can see that there is indeed a strong 
relationship between all of the sibling Autonomous systems we found earlier. Not only do we now know they share a 
common upstream provider, we also know that there is a high degree of risk sharing between the networks. It is to be 
expected that when an outage affects the upstream ASN, one or more of the downstream networks will be affected 
as well, especially if the downstream provider is single-homed and relies solely on this upstream provider for network 
connectivity.  However in our data there are many cases where there is no outage for the upstream provider, while 
there are sometimes hour-long outages for the downstream networks of which the timelines overlap exactly up to the 
minute. 
 
The conclusions we can draw from this are that the set of autonomous systems we looked at most likely rely on the 
same infrastructure for connectivity. Normally an outage by a service provider may cause an outage for some 
customers, but typically only for those in a specific geographic location. The fact that there is so much correlation 
between the Autonomous systems we looked at is a strong indicator that they could be operated by the same 
organization, are in the same physical location, and could even share a joint routing infrastructure. So even though 
typically each Autonomous systems has its own infrastructure in terms of routing, switching and compute, our data 
indicates there are strong indicators that these autonomous systems could well be operated by the same organization 
or even run on the same hardware.  
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USE CASE 3: ROGUE ASN DE-PEERED OR GONE STEALTH 
 
In this section, we discuss one case among many we observed of rogue peripheral ASNs that serve various malware 
content. In this example, it is AS48031, XSERVER-IP-NETWORK-AS PE Ivanov Vitaliy Sergeevich 86400 that had a 
single upstream provider AS15626. AS48031 has been hosting browser-based ransomware, porn sites, spam, and 
radical forums. 
 

 
Figure 19. Browlock web page. 

 
Browser-based ransomware or “browlock” is a rudimentary ransomware that consists of an HTML page that loads 
when the user visits the browlock domain. It locks the browser screen (through HTML or JavaScript code) and 
demands payment, supposedly for either possession of illegal material or usage of illegal software [19]. This is more 
of a scam than real ransomware (which corrupts or encrypts user’s data), because the browlock alert can be 
neutralized by simply killing the browser task. Despite its simplicity, browlock has been around for a few years 
targeting several countries, and seems to be generating profit for the criminals. Browlock has been delivered by 
dedicated (domains specifically registered for malicious intent) as well as compromised domains. 
 

Table 11. Prefixes announced by AS48031 in Fall 2013. 
Prefixes 

176.103.48.0/20 
193.169.86.0/23 
193.203.48.0/22 
193.30.244.0/22 
194.15.112.0/22 
196.47.100.0/24 
91.207.60.0/23 
91.213.8.0/24 
91.217.90.0/23 
91.226.212.0/23 
91.228.68.0/22 
93.170.48.0/22 
94.154.112.0/20 
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In Table 8., we show the prefixes announced by AS48031 in the fall of 2013. A few months later, in January 2014, 
AS48031 stopped advertising prefixes and disappeared from the global routing table as Figure 20 shows. 
 
 

 
Figure 20. AS48031 disappears off the global BGP routing table. 

 
However, those prefixes did not actually disappear, and AS48031’s only parent in the AS graph, its upstream peer 
AS15626, took over announcing them as Figure 21 shows. The rogue IPs in those prefixes continued to host 
malware content. 
 
The question remains whether AS15626 had been abused by its downstream client AS48031 to host malware, and if 
it acted responsibly by ceasing to announce those prefixes when it took notice of the malicious content on AS48031 
prefixes, or if both AS48031 and AS15626 are complicit in hosting malware, and AS15626 is simply being evasive by 
hiding AS48031 from the global routing table and yet keeping connectivity to the rogue IPs by announcing their 
prefixes. There are several such suspicious cases occurring on the BGP routing space. 
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Figure 21. Former prefixes of AS48031 now announced by upstream AS15626. 

 
USE CASE 4: MALICIOUS SUB-ALLOCATED RANGES 
 
In this section, we summarize a study we conducted for 5 months between Oct 2013 and Feb 2014 that consisted of 
monitoring rogue sub-allocated ranges on OVH [20] IP space, where these ranges are reserved by recurring 
suspicious customers and used to serve Nuclear Exploit kit domains. In this type of infection, visitors are lead to the 
Exploit landing sites through malvertising campaigns, and then malware is dropped on victims’ machines (e.g. zbot). 
Results of the study were published in [21]. 
 
For several months, OVH IP ranges had been abused. Notably, the IPs were exclusively used for hosting Nuclear 
Exploit subdomains, with no other sites sharing the IPs. These IPs were reserved in small ranges from OVH Canada 
and set up with identical services (nmap fingerprint). Consulting ARIN’s referral whois database showed the reserved 
ranges and customer IDs. As an evasive measure, on Feb 7th, the bad actors moved to besthosting.ua, a Ukrainian 
hosting provider. RIPE’s whois service, which covers European IP space, does not always give details on reserved 
ranges and customers, but the Ukrainian IPs in this case were still set up with identical services. Therefore, we 
flagged them as prone to serve the same Nuclear campaign. On Feb 14th, the actors moved to a Russian provider, 
pinspb.ru, with a similar bulk IP range setup. On Feb 22nd, they moved back to OVH, notably changing their MO: 
the IPs being used have been allocated and used in the past for other content. This could be an evasion technique or 
resource recycling. 
 
However, although bad actors have migrated between hosting providers to host the Nuclear Exploit serving domains, 
they still kept the name server’s infrastructure (authoritative for the Nuclear domains) on ranges reserved on OVH by 
the same customers, which still allows us to track them. Thanks to the great collaboration with the non-profit security 
research group MalwareMustDie, a large number of Nuclear Exploit domains active at the time have been taken 
down [22]. 
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Subsequently, bad actors have been circulating between OVH and other hosting providers. Lately, compromised 
domains, especially GoDaddy domains, are being used to host Nuclear and Angler Exploit kit domains (as we will 
cover in Section 5). 
 
 
USE CASE 5: PREDICTING MALICIOUS DOMAINS IP INFRASTRUCTURE 
 
As part of the study described in the previous section, we have been monitoring IP ranges reserved on OVH Canada 
by the suspicious customer(s) who reserved the ranges hosting Nuclear EK domains. Table 3 shows the number of 
reserved ranges, the total number of IPs they represent and the number of IPs effectively used for malicious 
purposes during the months of December 2013, January, February and early March 2014. These IPs were used to 
host Nuclear Exploit kit domains, Nuclear domains’ name servers, and browlock domains. 
 

Table 12. IP ranges reserved by suspicious customers. 
Reservation dates No ranges No IPs No IPs used 

Dec 1st to 31st 2013 28 136 86 

Jan 1st to 31st 2014 11 80 33 

Feb 1st to 28th 2014 4 28 26 

Mar 1st to 20th 2014 
Mar 7th 
Mar 10th 

43 
40 
3 

364 
352 
12 

215 
208 
7 

 
Looking at the prefixes to which these malicious reserved sub-ranges belong, we notice that all 86 ranges described 
in Table 9 are concentrated in 4 large OVH prefixes as Table 10 shows. 
 

Table 13. BGP prefixes of the rogue reserved ranges. 
Nb IPs BGP prefix 

388 198.50.128.0/17 

128 192.95.0.0/18 

80 198.27.64.0/18 

12 142.4.192.0/19 

 
We used two investigative techniques to track rogue IP ranges: the first one is to monitor sub-allocated ranges 
reserved by suspicious customers. The second technique is to monitor the IP’s service fingerprints. Below, we review 
a few examples of the IP ranges used to host Nuclear Exploit domains [21]: 
 
1) For the IPs hosted on besthosting.ua, the live IPs in the range 31.41.221.131 to 31.41.221.143 all have the same 
server setup (nmap fingerprint) 
22/tcp  open  ssh     OpenSSH 5.5p1 Debian 6+squeeze4 (protocol 2.0) 
80/tcp  open  http    nginx web server 0.7.67 
111/tcp open  rpcbind 
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2) For the IPs hosted on pinspb.ru, the IPs in the range 5.101.173.1 to 5.101.173.10 have the following fingerprint: 
22/tcp  open  ssh     OpenSSH 6.0p1 Debian 4 (protocol 2.0) 
80/tcp  open  http    nginx web server 1.2.1 
111/tcp open  rpcbind 
 
3) For the IPs hosted on OVH, the IPs in the range 198.50.143.64 to 198.50.143.79 have the following fingerprint: 
22/tcp  open     ssh          OpenSSH 5.5p1 Debian 6+squeeze4 (protocol 2.0) 
80/tcp  open     http         nginx web server 0.7.67 
445/tcp filtered microsoft-ds 
 
The IPs used to host the name servers also had the same fingerprints [21]. Notice that initially the malware IPs in a 
given range used to become active in bulk and sequential order, but later as an evasion method, the bad actors 
started bringing them up at random, one by one or a few at a time, right when they are about to deliver the Exploit kit 
attack. 
 
The combination of the two investigative techniques made it possible to predict the next attack IPs with practically no 
false positives. As hosting providers become more aggressive in suspending rogue customers’ accounts and swifter 
in taking down malware IPs, and as bad actors choose hosting providers on IP space where RIRs’ whois service 
does not always provide full information about reserved ranges and customers (e.g RIPE), the first technique might 
not always work. The second technique of fingerprint tracking, however, still provides accurate results when 
combined with other intelligence. 
 
USE CASE 6: DETECTING MALICIOUS SUBDOMAINS UNDER COMPROMISED DOMAINS 
 
In this section, we discuss the results of a 5-month study we conducted between February and June 2014 that 
followed the study of Section 3. For this project, we designed a system to preemptively detect malicious subdomains 
injected under compromised domains (particularly GoDaddy domains) and track their IP infrastructure. The 
phenomena of compromised GoDaddy domains serving malware has been around for at least 2 years [23]. The 
compromise can happen through at least two methods: hacking GoDaddy accounts or injecting malicious redirection 
scripts into vulnerable GoDaddy websites. When the compromise is successful, subdomains (third level domains) are 
injected under the GoDaddy domains (second level domains), and these subdomains resolve to malicious sites. 
 
Most abused ASNs 
By monitoring this threat from February to the present day, we observed that the subdomains resolve to IPs serving 
Exploit kit attacks (typically Nuclear [24][25] and Angler [26][27]), and also browser-based ransomware. We recorded 
several hundred IPs hosting these malicious subdomains over the period of the study.  
 
We see that the top 5 abused ASNs are: 

● 16276 OVH SAS 
● 24961 myLoc managed IT AG 
● 15003 Nobis Technology Group, LLC 
● 41853 LLC NTCOM 
● 20473 Choopa, LLC 

 
AS16276, which is OVH, hosted 18% of the total malicious IPs. In this specific case, as the abuse of OVH has been 
exposed through February 2014 (particularly for hosting Nuclear Exploit domains [21]), bad actors have changed their 
MO: they switched temporarily to other hosting providers, and started using recycled IPs (not reserved exclusively for 
Exploit domains). Additionally, OVH took action by suspending rogue accounts. However, by monitoring the 
compromised domains’ campaigns, we observed that OVH was still being abused by bad actors to host malicious 
content. These were the general changes in bad actors’ MO that we observed: 
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● From a domain perspective, for a while, bad actors had been abusing various ccTLDs (e.g. .pw, .in.net, .ru, 
etc.) facilitated by rogue or victim registrars and resellers. Then, they supplemented that approach with 
using compromised domains, particularly GoDaddy domains under which they inject subdomains to host 
Exploit kit landing urls and browlock (Notice that using compromised domains for attacks goes further back 
in the past for other different campaigns). 

● From an IP perspective, bad actors used to bring the attack hosting IPs online in contiguous chunks, then 
they started bringing them up in randomized sets or one IP at a time. 

● The other notable fact is that bad actors used to abuse OVH Canada (attached to ARIN) where rogue 
customers were reserving re-assigned small ranges (/27, /28, /29, etc.). By consulting the ARIN Rwhois 
database, it was possible to correlate the rogue customers with the IP ranges they reserve and therefore 
predict and block the IP infrastructures they set up for Exploit kit attacks. As the adversaries changed MO, 
this method became less effective in tracking them. 

● The shift became clear when they started to more frequently use ranges on OVH’s European IP space 
(which is attached to RIPE) as well as other European providers. Typically, we saw small gaming hosting 
providers being abused among other platforms. 

 
Additionally, although the standard geolocation of OVH European IP space maps to France (FR), the attack IP 
ranges were reserved from OVH's server pools in various European countries (France, Belgium, Italy, UK, Ireland, 
Spain, Portugal, Germany, Netherlands, Finland, Czech Republic, and Russia). This clearly shows that the 
adversaries are diversifying their hosting assets, which provides them redundancy and evasive capabilities. Notice 
also that RIPE has stricter data protection laws so it would be more difficult to obtain information about customers, 
and that could explain the shift in hosting infrastructures by the bad actors. 
 
More generally, we list a few of the small-scale hosting providers involved in hosting the attack subdomains. These 
hosting providers could either be abused, complicit with the bad actors, or simply lax about the maliciousness of the 
content they host. Notice the rogue providers among these will often switch prefixes by dropping dirty ones and 
reserving new ones from the backbone providers they are attached to. 
 

● http://king-servers.com/en/ This hoster has been observed to host Exploit kit domains (Angler, Styx), porn, 
dating sites, pharma sites [28][29]. It was also described by a comment on Web Of Trust as “Offers 
bulletproof hosting for Russian-Ukrainian criminals (malware distributors, etc.)” [30]. 

 
Figure 22. King-servers main website. 
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● http://evrohoster.ru/en/ hosted browlock through redirections from porn sites [31]. 
● http://www.xlhost.com/ hosted Angler EK domains [32] 
● https://www.ubiquityhosting.com/ hosted browlock. 
● http://www.qhoster.bg/ hosted Nuclear EK domains. 

 

 
Figure 23. Qhoster.bg main website. 

 
● http://www.codero.com/ 
● http://www.electrickitten.com/web-hosting/ 
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Figure 24. electrickitten.com main website. 

● http://hostink.ru/ 

String Analysis of Domain Names 
 
During this study, we recorded 19,000+ malicious subdomains injected under 4200+ compromised GoDaddy 2LDs. 
By analyzing the strings used for the subdomains, we recorded 12,000+ different labels. We show the list of top 5 
labels used; police, alertpolice, css, windowsmoviemaker, solidfileslzsr. police and alertpolice were the most common 
labels for hostnames serving browlock. The remaining labels were used for hostnames serving mainly Exploit kit 
attacks. In the Figure below, we show the frequency of number of occurrences for all used labels. 
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Figure 25. Frequency of number of occurrences of subdomains labels. 

 
One label occurred 746 times (police), 1 label occurred 22 times (alertpolice), 1 label occurred 10 times (css), 15 
labels occurred 6 times (windowsmoviemaker, solidfileslzsr are among them), and 11,727 distinct labels occurred a 
single time. 
 
Part 3: 3D Visualization Engine 
 
When it comes to graph visualization, there are multiple approaches to the problem however the main purpose of the 
engine is to analyze the topology of our knowledge base, therefore we need to orientate toward visualization 
techniques that will let the data drive the layout and not the opposite. For that very special kind of visuals, the state-
of-the art generally revolves around force-directed layouts [33]. 
The general concept is fairly simple : A force system is created using the entities of the dataset. The system is then 
simulated inside a physics engine for a certain number of iterations and the result is an multi-dimensional 
arrangement (usually 2D or 3D) completely defined by the shape of the relational structure therefore highlighting 
hidden clusters or topological patterns that may have gone completely invisible before then. 

The Fruchterman and Reingold algorithm 
Discovered in 1991, the Fruchterman and Reingold layout is one of the classic force-directed layouts. The main idea 
is to treat vertices in the graph as "atomic particles or celestial bodies, extering attractive and repulsive forces from 
one another". 
The force system operates as described in the diagram below : 
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Figure 26. Force-directed system. 
 
Without entering into too many technical details about the math supporting the model, the principle is elementary : 
Connected nodes attract each other and non-connected nodes repulse each other. 
The attractive force fa(d) and the repulsive force fr(d) both depend on the distance between the nodes and a 
constant k controlling the density of the layout. 
The algorithm also adds a notion of temperature which controls the displacement of the vertices. The higher the 
temperature, the faster the movement. 
The physics represent a system inspired by electrical or celestial forces associated with a general technique called 
"simulated annealing" [34] where increasing/decreasing the temperature affects the particles thermodynamics 
vibration, helping them to progressively reach an equilibrium state where all the node forces become even. That state 
usually looks like a visually pleasing molecule-shaped layout where relational clusters will aggregate in the same 
areas. 
This is only one of many variations of the force-directed layouts. Many other versions can be found on various 
papers. They will be integrated and documented in this white paper as they are implemented in the data visualization 
engine. 

Dealing with large graphs 
                                       
Being able to visualize a graph with a dozen of nodes and edges is absolutely not enough for modern day 
requirements. Most modern databases include millions or billions of entries. All 3D engines and particle systems have 
their physical limitations and force-directed layout algorithms usually increase in complexity as the size of the graph 
grows. Knowing those factors, how do we work around these issues ? 
 
a. Entity grouping 
One way to decrease the amount of information to process is the look at it from a higher level. Instead of dealing with 
entities, we can create nodes representing groups. The possibilities are endless depending on the subject we want to 
visualize. For instance : If we wanted to visualize the whole known universe with its planets and stars, it would make 
sense to structure our representation by a fractal approach where we would look first at galaxies then stars, planets, 
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continents, countries, cities (etc.) to reduce the size of the point cloud. We could then interactively decide to add more 
details on the fly as we move closer from a certain city. This would give access to the whole information without 
having to deal with all of it at once. 
 
b. Sampling 
Another interesting way to limit the size of a dataset without completely losing the fine details is to use sampling 
methods. We would take a certain certain percentage or a random sample of the complete dataset. The random 
subset could be built using a uniform or normal distribution (or any other user-defined distribution) and then more 
easily processed. Using the same previous universe analogy, for example we would randomly remove half of the 
galaxies, half of the planets/stars, half of the cities (etc.) and process the result. The data scientist has to adjust his 
hypotheses or assumptions based on the way the data was pruned. 
 

 
Figure 27. Random walk example. 

 
When dealing with graphs, an easy way to take random sample of a large graph is to use a "Random Walk" 
approach [35]. One would select random entry points in the graph and trace a random path in the graph starting from 
those points. 
There are many ways to tweak such an exploration technique. It highly depends on the user modifications and the 
biases involved in the selection of the random candidates but in general a random walk helps understanding the 
general structure of a very large graph. 
 
c. Parallelization 
When every other pruning technique has been used, the last answer is parallelization. We can effectively add more 
computing power to a system by distributing the calculation. This can happen remotely using "Grid Computing"  
technologies or localy using the performance of multiple threads / cores / processes [36]. However, the processing 
algorithm needs to be rewritten to work in a parallel fashion, which is unfortunately not always completely possible. 
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Using the most recent graphic cards we can take advantage of efficient GPUs and distribute the calculation on their 
always-increasing number of cores and threads. GPUs have become insanely good at working with geometrical data 
(such as vectors, colors, matrices, textures or any kind of computation involving a combination of these). 
Learning how to leverage GPUs (Or any parallel platform) with technologies such as OpenGL, GLSL and OpenCL 
(among many others) is definitely one key to unlock our theoretical barrier. 
 

 
Figure 28. OpenCL architecture. 

 
With OpenCL for example, a task can be fully or even partially distributed over several compute units. The efficiency 
of the whole system has then to be maximized by optimizing the different parts of the algorithm (Memory access, 
Instructions, Concurrency...). 
 
CONCLUSION 
 
In this paper, we covered a two-pronged strategy to catch malware at the DNS and IP level. First, we discussed 
methods to track fast flux botnets and presented a study on the zbot fast flux proxy network. Second, we proposed 
new methods to explore malicious IP space that enrich current reputation techniques. Known techniques assign 
maliciousness scores to IPs, prefixes, and ASNs based on counting volume of hosted content. In this work, we 
proposed to consider the topology of the AS graph, look at a granularity smaller than the BGP prefix and look at 
overlapping outages. In the first case, we showed cases of rogue sibling peripheral ASNs that are delivering common 
suspicious payloads. In the second case, we studied sub-allocated IP ranges and shed light on the MO of bad actors 
to abuse these allocations from providers and avoid detection. Our system provides actionable intelligence and helps 
preemptively detect, quarantine, and monitor or block specific rogue IP space. Finally, we presented our novel 3D 
visualization engine that adequately displays the use cases and offers a graph navigation and investigation tool. We 
demonstrated the process which transforms raw data into stunning 3D visuals. The engine features different 
techniques used to build and render large graph datasets: Force Directed algorithms accelerated on the GPU using 
OpenCL, 3D rendering and navigation using OpenGL ES, and GLSL Shaders. 
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