
Stitching numbers

Alex Moneger
Security Engineer

10th of August 2014

Generating ROP payloads from in memory numbers

Cisco Con!dential 2 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Work for Cisco Systems
!  Security engineer in the Cloud Web Security Business Unit (big cloud

based security proxy)
!  Interested mostly in bits and bytes
!  Disclaimer: research… own time… my opinions… not my employers

Who am I?

Cisco Con!dential 3 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

1.  Brief ROP overview
2.  Automating ROP payload generation

3.  Number Stitching
1.  Goal
2.  Finding gadgets
3.  Coin change problem

4.  Pros, Cons, Tooling
5.  Future Work

Agenda

Cisco Con!dential 4 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Introduction

Cisco Con!dential 5 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Use only gadgets generated by libc or compiler stubs. In short,
target the libc or compiler gadgets instead of the binary ones

!  Generate payloads using numbers found in memory

!  Solve the coin change problem to automatically generate ROP
payloads

!  Automate the payload generation

TL;DR

Cisco Con!dential 6 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

ROP overview

Cisco Con!dential 7 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Re-use instructions from the vulnerable binary
!  Control #ow using the stack pointer

!  Multi-staged:
1.  Build the payload in memory using gadgets
2.  Transfer execution to generated payload

!  Only way around today’s OS protections (let aside home routers,
embedded systems, IoT, …)

Principle

Cisco Con!dential 8 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Useful instructions => gadgets
!  Disassemble backwards from “ret” instruction

!  Good tools available
!  Number of gadgets to use is dependent upon target binary

Finding instructions

Cisco Con!dential 9 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Once payload is built in memory
!  Transfer control by “pivoting” the stack

!  Allows to redirect execution to a stack crafted by the attacker
!  Useful gadgets:

!  leave; ret
!  mv esp, addr; ret
!  add esp, value; ret

Transfer control to payload

Cisco Con!dential 10 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Automating payload generation

Cisco Con!dential 11 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Find required bytes in memory
!  Copy them to a controlled stack

!  Use either:
!  A mov gadget (1, 2 or 4 bytes)
!  A copy function if available (strcpy, memcpy, …) (variable byte length)

Classic approach

Cisco Con!dential 12 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Availability of a mov gadget
!  Can require some GOT dereferencing

!  Availability of some bytes in memory
!  May require some manual work to get the missing bytes

Potential problems

Cisco Con!dential 13 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Shellcode requires “sh” (\x73\x68)

!  Got it! What about “h/” (\x68\x2f)?

Finding bytes

someone@something:~/somewhere$#sc="\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80”#
someone@something:~/somewhere$#ROPgadget#abinary#Bopcode#"\x73\x68"#
Gadgets#information#
==#

0x08048321:#"\x73\x68”#
someone@something:~/somewhere$#hexdump#BC#abinary.text|#egrep#BBcolor#"73(\s)*68"#
00000320##75#73168#00#65#78#69#74##00#73#74#72#6e#63#6d#70##|ush.exit.strncmp|#

someone@something:~/somewhere$#hexdump#BC#hbinary5Bmem.txt#|#egrep#BBcolor#"68(\s)*2f"#
someone@something:~/somewhere$##

Cisco Con!dential 14 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Very small binaries do not tend to have many mov gadgets
!  In the case of pop reg1; mov [reg2], reg1:

!  Null byte can require manual work

mov gadget

Cisco Con!dential 15 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Number stitching

Cisco Con!dential 16 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Is exploiting a “hello world” type vulnerability possible with:
!  RELRO
!  X^W
!  ASLR

!  Can the ROP payload be built only from libc/compiler introduced
stubs?

!  In other words, is it possible not to use any gadgets from the target
binary code to build a payload?

Initial problem

Cisco Con!dential 17 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Program anatomy

Cisco Con!dential 18 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  What other code surrounds the “hello world” code?

!  Does libc add anything at link time?

Libc static functions

someone@something:~/somewhere$#pygmentize#abinary.c#
#include#<stdio.h>#
#
int#main(int#argc,#char#**argv,#char**#envp)#{#

#printf("Hello#Defcon!!\n");#
}#

someone@something:~/somewhere$#objdump#Bd#Bj#.text#BM#intel#abinary|#egrep#'<(.*)>:'#
08048510#<_start>:#
080489bd#<main>:#
080489f0#<__libc_csu_fini>:#
08048a00#<__libc_csu_init>:#
08048a5a#<__i686.get_pc_thunk.bx>:#

Cisco Con!dential 19 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  At link time “libc.so” is used
!  That’s a script which both dynamically and statically links libc:

!  Looks libc_nonshared.a statically links some functions:

Where does this come from?

someone@something:~/somewhere$#cat#libc.so#
/*#GNU#ld#script#
###Use#the#shared#library,#but#some#functions#are#only#in#
###the#static#library,#so#try#that#secondarily.##*/#
OUTPUT_FORMAT(elf32Bi386)#
GROUP#(#/lib/i386BlinuxBgnu/libc.so.6#/usr/lib/i386BlinuxBgnu/libc_nonshared.a##AS_NEEDED#(#/lib/i386B
linuxBgnu/ldBlinux.so.2#)#)#

Cisco Con!dential 20 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Quite a few functions are:

What is statically linked?

someone@something:~/somewhere$#objdump#Bd#Bj#.text#BM#intel##/usr/lib/i386BlinuxBgnu/libc_nonshared.a#|#egrep#
'<*>:'#
00000000#<__libc_csu_fini>:#
00000010#<__libc_csu_init>:#
00000000#<atexit>:#
00000000#<at_quick_exit>:#
00000000#<__stat>:#
00000000#<__fstat>:#
00000000#<__lstat>:#
00000000#<stat64>:#
00000000#<fstat64>:#
00000000#<lstat64>:#
00000000#<fstatat>:#
00000000#<fstatat64>:#
00000000#<__mknod>:#
00000000#<mknodat>:#
00000000#<__warn_memset_zero_len>:#
00000000#<__stack_chk_fail_local>:#

Cisco Con!dential 21 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Those functions are not always included
!  Depend on compile options (-fstack-protector, …)

!  I looked for gadgets in them.
!  Fail…

Gadgets in static functions

Cisco Con!dential 22 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Anything else added?

!  Is there anything else added which is constant:
!  get_pc_thunk.bx() used for PIE, allows access to GOT
!  _start() is the “real” entry point of the program

!  There are also a few “anonymous” functions (no symbols)
introduced by gcc.

!  Those functions relate to pro!ling

Cisco Con!dential 23 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Pro!ling is surprisingly on by default on some distros. To check
default compiling options: cc –Q –v.

!  Look for anything statically linking

!  This work was done on gcc 4.4.5
!  Looking for gadgets in that, yields some results!

Static linking

Cisco Con!dential 24 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  What I get to work with:
1.  Control of ebx in an pro!ling function: pop#ebx#;#pop#ebp#;;#
2.  Stack pivoting in pro!ling function: leave#;;
3.  Write to mem in pro!ling function: add#[ebx+0x5d5b04c4]#eax#;;#
4.  Write to reg in pro!ling function: add#eax#[ebxB0xb8a0008]#;#add#esp#

0x4#;#pop#ebx#;#pop#ebp#;;

!  In short, attacker controls:
!  ebx
!  That’s it…

!  Can anything be done to control the value in eax?

Useful gadgets against gcc 4.4.5

Cisco Con!dential 25 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Shellcode to numbers

Cisco Con!dential 26 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Useful gadget: add#eax#[ebxB0xb8a0008]#;#(removed trailing junk)
!  We control ebx, so we can add arbitrary memory with eax

!  Is it useful?
!  Yes, let’s come back to this later

Accumulating

Cisco Con!dential 27 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Useful gadget: add#[ebx+0x5d5b04c4]#eax#;;#
!  Ebx is under attacker control

!  For the time being, assume we control eax
!  Gadget allows to add a value from a register to memory

!  If attacker controls eax in someway, this allows to write anywhere

!  Use this in order to dump a value to a custom stack

Dumping

Cisco Con!dential 28 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Choose a spot in memory to build a stack:
!  .data section is nice
!  must be a code cave (mem spot with null bytes), since we are performing

add operations

!  Choose a shellcode to write to the stack:
!  As an example, use a setreuid shellcode

!  Nothing unusual in all this

Approach

Cisco Con!dential 29 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

1.  Next, cut the shellcode into 4 byte chunks
2.  Interpret each chunk as an integer

3.  Keep track of the index of each chunk position
4.  Order them from smallest to biggest

5.  Compute the di$erence between chunks

6.  There is now a set of monotonically increasing values representing
the shellcode

Chopping shellcode

Cisco Con!dential 30 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Visual chopping

\x04\x03\x02\x01 \x08\x07\x06\x05 \x0d\x0c\x0b\x0a

0x01020304 0x05060708 0x0a0b0c0d

1 32

123

0x01020304 0x04040404 0x05050505
3 2 1

0x05060708 –
0x01020304

2

0x0a0b0c0d –
0x05060708

1

Shellcode

Chunks

Deltas

Monotonically
increasing

Cisco Con!dential 31 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Shellcode is represented as increasing deltas
!  Add delta n with n+1

!  Dump that delta at stack index
!  Repeat

!  We’ve copied our shellcode to our stack

Reverse process

Cisco Con!dential 32 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

1.  Find address of number 0x01020304 in memory

2.  Load that address into ebx

3.  Add mem to reg. Eax contains 0x01020304

4.  Add reg to mem at index 3. Fake stack contains “\x04\x03\x02\x01”

5.  Find address of number 0x04040404 in memory and load into ebx

6.  Add mem to reg. Eax contains 0x01020304 + 0x04040404 = 0x05060708

7.  Add reg to mem. Fake stack contains “\x08\x07\x06\x05\x04\x03\x02\x01”

8.  Repeat

Example

Cisco Con!dential 33 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  How easy is it to !nd the shellcode “numbers” in memory?
!  Does memory contain numbers such as:

!  0x01020304
!  "\x6a\x31\x58\x99” => 0x66a7ce96 (string to 2’s complement integer)

!  If not, how can we build those numbers to get our shellcode?

Problem

Cisco Con!dential 34 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Stitching numbers

Cisco Con!dential 35 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  It’s not easy to !nd “big” numbers in memory
!  Shellcode chunks are big numbers

!  Example: looking for 0x01020304:

!  In short, not many large numbers in memory

Answers

someone@something:~/somewhere$#gdb#hw#
gdbBpeda$#peda#searchmem#0x01020304#.text#
Searching#for#'0x01020304'#in:#.text#ranges#
Not#found#

Cisco Con!dential 36 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Scan memory regions in ELF:
!  RO segment (contains .text, .rodata, …) is a good candidate:

!  Read only so should not change at runtime
!  If not PIE, addresses are constant

!  Keep track of all numbers found and their addresses

!  Find the best combination of numbers which add up to a chunk

Approach

Cisco Con!dential 37 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  This is called the coin change problem
!  If I buy an item at 4.25€ and pay with a 5€ note

!  What’s the most e"cient way to return change?
!  0.75€ change:

!  1 50 cent coin
!  1 20 cent coin
!  1 5 cent coin

Coin change problem

Cisco Con!dential 38 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  In dollars, answer is di$erent
!  0.75$:

!  1 half-dollar coin
!  1 quarter

!  Best solution depends on the coin set
!  Our set of coins are the numbers found in memory

In hex you’re a millionaire

Cisco Con!dential 39 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Ideal solution to the problem is using Dynamic Programming:
!  Finds most e"cient solution
!  Blows memory for big numbers
!  I can’t scale it for big numbers yet

!  Sub-optimal solution is the greedy approach:
!  No memory footprint
!  Can miss the solution
!  Look for the biggest coin which !ts, then go down
!  Luckily small numbers are easy to !nd in memory, meaning greedy will

always succeed

Solving the problem

Cisco Con!dential 40 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  75 cents change example:
!  Try 2 euros ✖
!  Try 1 euro ✖
!  Try 50 cents ✔#

!  Try 20 cents ✔#

!  Try 10 cents ✖
!  Try 5 cents ✔

!  Found solution:

Greedy approach

Cisco Con!dential 41 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Tool to !nd a solution to the coin change problem
!  Give it a number, will get you the address of numbers which solve

the coin change problem
!  Can also:

!  Ignore addresses with null-bytes
!  Exclude numbers from the coin change solver
!  Print all addresses pointing to a number
!  …

Introducing Ropnum

Cisco Con!dential 42 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Find me:
!  The address of numbers…
!  In the segment containing the .text section
!  Which added together solve the coin change problem (i.e.: 0x01020304)

Usage

someone@something:~/somewhere$#ropnum.py#Bn#0x01020304#BS#Bs#.text#hw#2>#/dev/null##
Using#segments#instead#of#sections#to#perform#number#lookups.#
Using#sections#[.text]#for#segment#lookup.#
Found#loadable#segment#starting#at#[address#0x08048000,#offset#0x00000000]#
Found#a#solution#using#5#operations:#[16860748,#47811,#392,#104,#5]#

0x08048002#=>#0x0101464c#16860748#
0x0804804c#=>#0x00000005########5#
0x080482f6#=>#0x00000068######104#
0x08048399#=>#0x0000bac3####47811#
0x08048500#=>#0x00000188######392#

Cisco Con!dential 43 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Now you can use an accumulating gadget on the found addresses

!  add#eax#[ebxB0xb8a0008]#;#add#esp#0x4#;#pop#ebx#;#pop#
ebp#;;#

!  By controlling the value addressed by ebx, you control eax

Ropnum continued

someone@something:~/somewhere$#ropnum.py#Bn#0x01020304#BS#Bs#.text#hw#2>#/dev/null#
Found#a#solution#using#5#operations:#[16860748,#47811,#392,#104,#5]#
0x08048002#=>#0x0101464c#16860748#
0x0804804c#=>#0x00000005########5#
0x080482f6#=>#0x00000068######104#
0x08048399#=>#0x0000bac3####47811#
0x08048500#=>#0x00000188######392#
someone@something:~/somewhere$#python#Bc#'print#hex(0x00000188+0x0000bac3+0x00000068+0x00000005+0x0101464c)'###########
0x1020304#

Cisco Con!dential 44 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Putting it together

Cisco Con!dential 45 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Cut and order 4 byte shellcode chunks
!  Add numbers found in memory together until you reach a chunk

!  Once a chunk is reached, dump it to a stack frame
!  Repeat until shellcode is complete

!  Transfer control to shellcode

!  Git it at https://github.com/alexmgr/numstitch

Summary

Cisco Con!dential 46 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  What it does:
!  Takes an input shellcode, and a frame address
!  Takes care of the tedious details (endianess, 2’s complement, padding, …)
!  Spits out some python code to generate your payload

!  Additional features:
!  Add an mprotect RWE stub frame before your stack
!  Start with an arbitrary accumulator register value
!  Lookup numbers in section or segments

Introducing Ropstitch

Cisco Con!dential 47 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  The fake stack lives in a RW section
!  You need to make that page RE

!  Mprotect allows to change permissions at runtime
!  The mprotect stub will change the permissions of the page to allow

shellcode execution
!  Mprotect(page base address, page size (0x1000), RWE (0x7))

Why do you need an mprotect stub

Cisco Con!dential 48 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Generate a python payload:
!  To copy a /bin/sh shellcode:
!  To a fake frame frame located at 0x08049110 (.data section)
!  Appending an mprotect frame (default behaviour)
!  Looking up numbers in RO segment
!  In binary abinary

Example usage

someone@something:~/somewhere$#ropstitch.py#Bx#"\x6a\x31\x58\x99\xcd\x80\x89\xc3\x89\xc1\x6a
\x46\x58\xcd\x80\xb0\x0b\x52\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x89\xd1\xcd
\x80"#Bf#0x08049110#BS#Bs#.text#Bp#abinary#2>#/dev/null#

Cisco Con!dential 49 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  The tool will spit out some python code, where you need to add your
gadget addresses

!  Then run that to get your payload

!  Output is too verbose. See an example and further explanations on
numstitch_details.txt (Defcon CD) or here:
https://github.com/alexmgr/numstitch

Example tool output

Cisco Con!dential 50 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

GDB output
gdbBpeda$#x/16w#0x804a11c#
0x804a11c: #0xb7f31e00 #0x00000000 #0x00000000 #0x00000000#
0x804a12c: #0x00000007 #0x00000000 #0x00000000 #0x00000000#
0x804a13c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
0x804a14c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
gdbBpeda$###Writing#int#0x80.#Notice#that#the#numbers#are#added#in#increasing#order:#
0x804a11c: #0xb7f31e00 #0x00000000 #0x00000000 #0x00000000#
0x804a12c: #0x00000007 #0x00000000 #0x00000000 #0x00000000#
0x804a13c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
0x804a14c: #0x00000000 #0x00000080 #0x00000000 #0x00000000#
gdbBpeda$###Writing#mprotect#page#size#(0x1000).#Notice#that#the#numbers#are#added#in#increasing#order:#
0x804a11c: #0xb7f31e00 #0x00000000 #0x00000000 #0x00001000#
0x804a12c: #0x00000007 #0x00000000 #0x00000000 #0x00000000#
0x804a13c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
0x804a14c: #0x00000000 #0x00000080 #0x00000000 #0x00000000#
gdbBpeda$#c#10#
gdbBpeda$###later#execution#(notice#the#missing#parts#of#shellcode,#which#will#be#filed#in#later,#once#
eax#reaches#a#slice#value):#
0x804a11c: #0xb7f31e00 #0x0804a130 #0x0804a000 #0x00001000#
0x804a12c: #0x00000007 #0x00000000 #0x2d686652 #0x52e18970#
0x804a13c: #0x2f68686a #0x68736162 #0x6e69622f #0x5152e389#
0x804a14c: #0x00000000 #0x00000080 #0x00000000 #0x00000000#
gdbBpeda$###end#result#(The#shellcode#is#complete#in#memory):#
0x804a11c: #0xb7f31e00 #0x0804a130 #0x0804a000 #0x00001000#
0x804a12c: #0x00000007 #0x99580b6a #0x2d686652 #0x52e18970#
0x804a13c: #0x2f68686a #0x68736162 #0x6e69622f #0x5152e389#
0x804a14c: #0xcde18953 #0x00000080 #0x00000000 #0x00000000#

Cisco Con!dential 51 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Pros and cons

Cisco Con!dential 52 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Pros:
!  Can encode any shellcode (no null-byte problem)
!  Lower 2 bytes can be controlled by excluding those values from the

addresses
!  Not a$ected by RELRO, ASLR or X^W

!  Cons:
!  Payloads can be large, depending on the availability of number
!  Thus requires a big stage-0, or a gadget table

Number stitching

Cisco Con!dential 53 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Further usage

Cisco Con!dential 54 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  What if the value of eax changes between runtimes?
!  In stdcall convention, eax holds the return value of a function call

!  Just call any function in the PLT
!  There is a good chance you control the return value that way

Initialize eax

Cisco Con!dential 55 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Number stitching can also be used to load further gadgets instead of
a shellcode

!  Concept of a gadget table

!  Say you need:
!  Pop ecx; ret; => 59 c3
!  Pop ebx; ret; => 5b c3
!  mov [ecx] ebx; ret; => 89 19 c3

!  Your shellcode becomes: “\x59\xc3\x5b\xc3\x89\x19\xc3”

Shrink the size of the stage-0

Cisco Con!dential 56 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Number stitching can transfer those bytes to memory
!  ropstitch can change the memory permissions with the mprotect

stub
!  You can then just call the gadgets from the table as if they we’re part

of the binary
!  You have the ability to load any gadget or byte in memory

!  This is not yet automated in the tool

Gadget table

Cisco Con!dential 57 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Future work

Cisco Con!dential 58 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Search if there are numbers in memory not subject to ASLR:
!  Check binaries with PIE enabled to see if anything comes up
!  By de!nition, probably wont come up with anything, but who knows?

!  Search for gadgets in new versions of libc/gcc. Seems di"cult, but
might yield a new approach

General

Cisco Con!dential 59 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  Get dynamic programming approach to work with large numbers:
!  Challenging

!  64 bit support. Easy, numbers are just bigger. Mprotect stack might
be harder because of the di$erent ABI

!  Introduce a mixed approach:
!  String copying for bytes available
!  Number stitching for others
!  Maybe contribute it to some rop tools (if they’re interested)

!  Simplify the concept of gadget tables in the tool

Tooling

Cisco Con!dential 60 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

Contact details

Cisco Con!dential 61 © 2013-2014 Cisco and/or its a"liates. All rights reserved.

!  amoneger@cisco.com
!  https://github.com/alexmgr/numstitch

Alex Moneger

Thank you!

