
Trolling with Math
base26_t YOU = 0x038C2767;

Trolling with Math
wat?

• frank^2

• pronounced “frank 2” (the carat is ~flare~)

• “that guy with the hat”

• DC949

• DC310

Trolling with Math
When we last left our heroes...

• “I have no idea what the fuck frank^2 is
talking about, but its awesome.”

• “More content, less bullshit.”

Content

Trolling with Math
ya we pumpin

Trolling with Math
MATH!

• It’s very possible your math teacher made
this more complicated than it needs to be.

• f(x) = x * 7

• (lambda x: x * 7)

• public static int
multiplyBySevenAndReturn(Integer x)
{ return x * 7; }

• Mathematic functions can get even more
complicated, but this is all we need for now.

Trolling with Math
ASSEMBLY!

• JMP and CALL instructions are not specific
with immediate values. They’re offsets.

• JMP 00401000 is more like JMP-A-FEW-
BYTES-AHEAD. It’s the same with CALL.

• ...except CALL sticks its dick in your
stack.

• Hot.

Trolling with Math
ASSEMBLY!

• Oh, except for when you stick an address
in a register. Totally different.

• When you stick an address in a register and
then do something like CALL EAX, it
specifically goes to whatever value is in
EAX.

• Same goes for CALL [EAX] or JMP [EAX]--
it just dereferences EAX and jumps to that
address.

Trolling with Math
ASSEMBLY!

• Let’s talk about JMP SHORT.

• This is essentially a jump within the range
of -127 8==0==D 127.

• Regular JMP instructions are more like
-2147483647 8====0====D 2147483647

Trolling with Math
ASSEMBLY!

• There is no such thing as CALL SHORT.

• I know, right?

• What the hell.

Trolling with Math
ASSEMBLY!

• Here’s some computer science witchcraft.

• Technically you can define the space
between each instruction as...

Trolling with Math

Trolling with Math
ASSEMBLY!

• Each instruction is executed one after
another.

• This can be interpreted as an unconditional
jump to the next instruction.

• This gives us space between each assembly
instruction so long as each instruction is
subsequently linked by an unconditional
jump.

Trolling with Math
ASSEMBLY!

MOV EAX,5355434B

MOV EBX,20412044

XOR EAX,EBX

CALL 49434B20

MOV EDX,EAX

SUB AL,46

XOR EAX,41545459

Trolling with Math
ASSEMBLY!

MOV EAX,5355434B
JMP 0
MOV EBX,20412044
JMP 0
XOR EAX,EBX
JMP 0
CALL 49434B20
JMP 0
MOV EDX,EAX
JMP 0
SUB AL,46
JMP 0
XOR EAX,41545459
JMP 0

Trolling with Math
ASSEMBLY!

• It is therefore possible to place every single
assembly instruction in an arbitrary
location in memory if and only if each
singular instruction is followed by an
accompanying unconditional jump to the
next instruction.

Trolling with Math
ASSEMBLY!

• A one-dimensional array can technically be
interpreted as a two-dimensional array as
well. It just requires a little math.

• This gives us the ability to interpret a
location in memory as an X/Y grid.

• Coupled with interpreting null space
between instructions as unconditional
jumps, we can literally draw instructions.

• This is awesome.

Trolling with Math
Let’s do this

• Disassemble each instruction.

• Allocate space in memory significantly
larger than the collection of instructions.

• For each instruction, determine f(x)

• Place each instruction at the corresponding
(x,y) location in memory.

• Join the instruction with an unconditional
jump.

• Mark memory executable and run.

Bullshit

Trolling with Math
FUCK!

• Like gravity, that shit only works in theory.

• In practice, we’re fucked.

• Totally and utterly fucked.

Trolling with Math
FUCK!

• All of your JMP instructions? Fucked.

• All of your CALL instructions? Fucked.

• Any self-referential code? Fucked.

• Self-modifying code that relies on iteration?
You better BELIEVE it’s fucked.

Trolling with Math
FUCK!

• Let’s start with JMP instructions.

• Since JMPs are offsets, when placed in an
arbitrary location, they no longer point to
where you think they’re pointing at.

• Short JMPs are in a similar situation. When
arbitrarily placed by your f(x) function, they
will very likely not point to where you
think they will.

• Short JMPs are easily fixed. Long JMPs? Not
so much.

Trolling with Math
FUCK!

• Dealing with register-based JMPs are going
to be an issue as well.

• Since they require hard offsets and may be
calculated at run-time, there is no easy way
to determine where they’re going.

• So unless you want to do some extra work
to get this working... you may as well ignore
it.

Trolling with Math
FUCK!

• f(x) formulas aren’t nearly as elegant in
code as they are on paper.

• This requires all sorts of strange voodoo
magic if we want to use arbitrary
formulas-- function pointers, class pointers,
the whole shebang.

DEAL WITH IT

Trolling with Math
he;lp

• At disassembly, convert all your JMP
SHORTs to JMP PANTS before storing
them away.

• Simple enough!

Trolling with Math
he;lp

• The actual offset data though? Hoo.

• All instructions which you’ve detected have
offsets that will move when the code is
moved need to be recalculated.

• This means you need to:

• Keep track of the instructions.

• Keep track of the targets.

• See the source for an example of how I
accomplished this.

Trolling with Math
he;lp

• After all the instructions are placed, replace
the old offsets with the new offsets.

• Assuming you didn’t fuck up the offsets,
those problems are now solved.

Trolling with Math
he;lp

• Now that we have the caveats out of the
way, we have a path to a potential higher-
level implementation.

• It goes like this:

Trolling with Math
Implementation

• Disassemble instructions.

• Prepare buffer.

• Initialize f(x) function constants.

• Iterate over f(x) values and determine data
pointers by which your code will be
written to while tracking fucked
instructions.

• Write the instructions to the
corresponding pointers.

Trolling with Math
Implementation

• Repair all your conditional jumps.

• Mark the new section of memory as
executable.

• RUN!

Trolling with Math
Who cares?

• The isolation of assembly instructions and
numerical steps to calculate f(x) allows us
to place assembly instructions anywhere in
the buffer we want to with little to no
interaction from the user.

• In order to obfuscate the clarity of the
codepath, all you have to do is write a
function and point the MATHEMACHINAE
at some assembly.

Trolling with Math
Who cares?

• This makes accomplishing various
polymorphic techniques a little bit simpler
as well.

• Instead of writing code that manipulates
your code in a specific way each time, you
can write a series of functions which
randomly determine the location of your
code, then select those functions at
random, etc.

Trolling with Math
Who cares?

• Anti-reversing isn’t about how cool and
fresh your anti-debug techniques are.

• Anti-reversing isn’t about how much of a
boner you get from breaking out of IDA
and spawning Last Measure all over a
reverser’s desktop (but it is pretty
goddamn funny).

• Anti-reversing is about being a dick.

Trolling with Math
Who cares?

• Everyone knows where to Google for anti-
debug techniques.

• You can’t Google for creativity, though.

• The most creative anti-reversing assholes
among you will be the direct result of
broken fingers and fist-sized holes in
plastered walls.

• And that’s something to be proud of!

Trolling with Math
Yo dawg, I heard this joke was played out...

Trolling with Math
...but it’s contextual, so fuck the haters

Trolling with Math
At least I didn’t use memegenerator

Trolling with Math
AW FUCK

Trolling with Math
Shit sucks

• But the example code only uses
unconditional jumps.

• Unconditional jumps only go in one
goddamn direction.

• Conditional jumps go in two.

• That makes them better.

Trolling with Math
wait wh

• If we require conditional jumps yet need to
use unconditional jumps... what the fuck?

• Opaque predicates save the day!

• But why stop there?

Trolling with Math
Hardening

• Consider the null-space expansion posited
earlier.

• If a set of instructions has an unconditional
jump between each instruction, it also
follows that a series of assembly
instructions which do not have direct affect
on the result of our desired instructions
can precede or proceed a single
instruction.

• This is even more awesome.

Trolling with Math
Hardening

pre-amble
assembly data

post-script

Trolling with Math
Hardening

• The pre-amble section can be used for two
things:

• Repairing the after-effects of the previous
pre-amble’s opaque predicate.

• Anti-debug code chunks.

Trolling with Math
Hardening

• The post-script is a whole lot more fun.

• This section can be used for:

• Opaque predicates and obfuscated jumps

• Anti-debug and general control-flow
obfuscation

• Encryption/decryption of various chunks
of code within the program

Trolling with Math
Hardening

CALL IsDebuggerPresent
CMP EAX,1
JE FuckYouNeighbor
MOV EAX,5355434B
PUSH EAX
XOR EAX,EAX
JZ nextBlock

POP EAX
MOV EBX,20412044
CLC
JNC nextBlock

Trolling with Math
Hardening

• This obviously introduces a whole lot more
issues than our baseline does, such as after-
effects and a complication of generating all
the different sets of instructions.

• So throw your Shmooballs if you got ‘em,
I’m about to be That Guy:

COMING SOON
(AKA READ MY SHITTY BLOG)

Trolling with Math
Hardening

• Our f(x) formulas don’t necessarily need to
be calculated iteratively, e.g. f(1), f(2), ... f(n)

• There’s nothing to stop us from randomly
calculating them as well!

Trolling with Math
Hardening

• If our code is generated from a predictable
formula, then it follows the entry point is
predictable, i.e. it can be calculated at
runtime.

• Oh, hi mister Debugger! What’s that? You
want to ride the snake?

• NOT WORTHY

Drawbacks

Trolling with Math
Drawbacks

• This technique assumes sanely compiled
code.

• This means if you’re trying to obfuscate
assembly that would make the Conficker
gang say “bravo!”, you’re screwed.

Trolling with Math
Drawbacks

• Massive memory footprint.

• You are likely going to be dealing with a
HUGE dataset when you’re done.

• This gets significantly larger when you
obfuscate more than just one functions.

• I sure hope your FuDG3p4Ck3R v6.66 is
efficient!

Trolling with Math
Drawbacks

• You think your function pointers are so
clever? Yeah? Fuck you, they’re broken.

• Wise-guy thought he might be smart by
using C++ and the STL to get by and make
his code more efficient? Fuck your OOP
paradigm.

Trolling with Math
Drawbacks

• The more clever you get with generating
obfuscation pairs and manipulating the
assembly, the more complicated it gets to
repair.

• It’s a slippery-slope from “oh, hey, neat, I can
just stick a JMP or two in here” to “HOW
THE FUCK DO I MEMORIZE THE
DRAGONBOOK IN AS SHORT AMOUNT
OF TIME AS POSSIBLE?!”

Trolling with Math
End!

• @franksquared

• http://argolithmic.blogspot.com

• http://argolith.ms

http://argolithmic.blogspot.com
http://argolithmic.blogspot.com
http://argolith.ms
http://argolith.ms

