
Operating System Fingerprinting for Virtual Machines

Nguyen Anh Quynh
Email: aquynh@gmail.com

Abstract

In computer security field, Operating System fingerprint-
ing (OSF) is the process of identifying the OS variant and
version. OSF is considered an important stage to decide
security policy enforced on protected Virtual Machine
(VM). OSF is also the first step of VM introspection pro-
cess. Unfortunately, current OSF techniques suffer many
problems, such as: they fail badly against modern Oper-
ating System (OS), they are slow, and only support lim-
ited OS-es and hypervisors.

This paper analyzes the drawbacks of current OSF ap-
proaches against VM, then introduces a novel method
named UFO to fingerprint OS running inside VM. Our
solution fixes all the above problems: Firstly, it can rec-
ognize all the available OS variants and (in lots of cases)
exact OS versions with excellent accuracy, regardless of
OS tweaking. Secondly, UFO is extremely fast. Last but
not least, it is hypervisor-independent: we proved that by
implementing UFO on Xen.

1 Introduction

OSF is the process of understanding which OS is running
on a particular machine. OSF is helpful for the admin-
istrators to properly decide the security policy to protect
their systems. For example, assume that we want to pro-
tect this machine against the Conficker worm [10]. If
we know that this machine runs Linux, which is not ex-
ploitable by Conficker, we do not need secure it. But if
that machine runs a specific version of Microsoft Win-
dows, we have to look more closely: in case the OS is
Windows 7, we can safely ignore the problem, because
Conficker does not affect this Windows edition. But if
the OS is Windows XP SP3, which can be remotely com-
promised by this worm, we should put a firewall around
the machine to prevent the attack, and possibly IDS/IPS
must be deployed on the network path to monitor the
threat.

One more motivation for our research is that knowing
the VM’s OS is important for memory introspection on
VM [6]: memory analyzing can only be done when we
know exactly the OS version of the OS inside the VM,
because every OS variant, and also OS version, is very
different in the internal structure.

This research explores available methods to perform
OSF on VM, to help the VM administrators to keep track
of the OS-es installed inside their VMs. The reason is
that in reality, each VM can be rented by different per-
son, and runs whatever OS that the VM’s owner setup
inside. Even initially the administrator knows exactly the
OS installed in a particular VM, which might not be true
anymore after that, because the VM’s owner can upgrade
his OS anytime. This is the actual case with Windows
OS: Windows XP users can upgrade their OS to Win-
dows Vista, then to Windows 7 with ease. The other
problem he must frequently cope with is to protect un-
known VM, with unknown OS, which might be migrated
into his physical machines anytime from the cloud.

Unfortunately, available OSF approaches against VM
have many problems. Firstly, they fail badly against
modern OS-es having none or minimal customization.
Secondly, some methods are not as fast as we would de-
sire: they might take at least few dozen seconds for one
target. Lastly, some methods depend on the hypervisors,
and can only recognize particular OS-es.

We propose a novel method named UFO to solve these
outstanding issues: UFO can recognize all the available
OS-es variants, and even their exact versions, with excel-
lent accuracy. We perform fuzzing fingerprints, so UFO
can also deal with OS having non-trivial customization.
The other benefit is that UFO is extremely fast: the fin-
gerprinting is done in in milliseconds. Besides, it sup-
ports all kind of hypervisors. We proved that by imple-
mentations for Xen [14] and Microsoft Hyper-V [9].

1



2 Available OSF Solutions for VM

This section discusses the current problems of available
OSF solutions for VM, then proposes several require-
ments for a desired OSF tool for VM.

2.1 Network-based OSF

Many OSF tools, such as nmap [5] and xprobe [15], have
been introduced to actively perform remote OSF via net-
work. While these tools are traditionally used against
physical systems, they can be perfectly employed to fin-
gerprint VMs exposed to the network, too.

However, all the network-based OSF methods suffer
some major problems: they either rely on scanning open
ports on the target, or on examining the replied packets.
Unfortunately, nowadays modern systems tighten their
setup, thus remote OSF fails in many cases. For exam-
ple, Windows 7 disables all the network services by de-
fault, therefore close all the TCP/UDP ports. As a result,
nmap cannot find any open ports, thus have no informa-
tion to perform fingerprinting. The on-by-default firewall
on Windows 7 also drops all the ICMP packets, so leaves
no chance for xprobe, who relies on ICMP data to work.

The other problem is that network-based OSF is quite
slow: nmap, a tool having a lot of optimization, typically
takes at least 30 seconds on one target, even when we run
nmap on the host VM, against a guest VM on the same
physical machine. This problem is unavoidable, because
nmap has to scan thousand ports on the target, then must
wait for the responses, with specific timeout.

Last but not least: it is a trend that the administrators
are more aware of OSF issue, and start to deploy anti-
finger OS solutions, such as ipmorph [12], in their sys-
tem to fool all the current network-based OSF methods.
The fact that the tool like ipmorph is free and easy-to-use
renders network-based OSF obsolete in many cases.

2.2 Memory Introspection

Memory introspection is the method of inspecting and
analyzing the raw memory of the guest VM from the host
VM, to understand the context and status of the guest
[6]. This technique can disclose unlimited information
about the guest OS, including even OS version and op-
tions. While memory introspection sounds like a solution
for our problem, however memory introspection must be
done in the other way around: we should know exactly
the OS runs inside the guest first to apply the right intro-
spection method to analyze its memory. Unfortunately,
there are a lot of OS-es to be recognized, and even with
the OS source code in hand, understanding the OS inter-
nals to extract the desired information is far from trivial.

Paper [4] proposed an interesting method to finger-
print the OS without having to know the OS internals,
that is to compare the hash value of the first code frag-
ments of the interrupt handlers with known OS-es. The
authors claimed that this is possible because the interrupt
handlers vary significantly across OS types and versions.
However, this idea misses an important point: the bi-
nary code depends on compilers, compiler versions, and
also compiler settings used to compile the OS. For open
source OS, such as Linux, *BSD or OpenSolaris, the ker-
nel can be recompiled by users using whatever compiler
and compiler options they want to. In such a case, even
with the same source code, the interrupt code might vary
accordingly, and the hash value of the interrupt handler
greatly change. Consequently, the method of [4] fails to
recognize the OS, even if the OS internals are unchanged.

2.3 Inspecting File-system Content

Another solution is to mount the guest file-system (FS),
extract out special files and analyze their contents for in-
formation on OS variant and version. This approach is
feasible because in principle, the host VM can access to
the guest’s FS, and reads its content. This method is al-
ready used by a tool named virt-inspector [8]: it mounts
the FS, then extracts out and analyzes the registry files
for Windows version [7].

However, there are some significant problems with
this approach. Firstly, if the guest uses unknown FS, it
is impossible for the host to mount its FS and access to
its content. For this exact reason, the solution is not re-
ally portable to non-Unix hypervisors, such as Microsoft
Hyper-V, with the host VM is based on Windows OS.
Indeed, currently Windows can only understand ext2 FS
[1], but fails to recognize various other important FS-es
in Linux world, which can be used in Linux-based VM
running on Hyper-V.

Secondly, in case the guest encrypts the FS (which is a
reasonable way to provide some security and privacy for
guest VM in cloud environment), it is practically impos-
sible for the host to understand the FS content.

Bottom line, we can see that all the available solutions
examined above are not quite capable to solve the OSF
problem for VM. We desire a better OSF tool with the
following six requirements: (1) It gives accurate finger-
print result, with details on the target OS version. (2)
It does not depend on the compiler using to compile the
OS. (3) It is more resilient against OS tweaking. (4) It
is not easy to be fooled by currently available anti-OSF
tools. (5) It is faster, and should not cause any negative
impact on the guest performance. (6) It can work with
all kind of hypervisors. On the other words, it should be
hypervisor independent.

Our paper tries to solve the OSF problems against

2



VMs running on the Intel platform, the most popular ar-
chitecture nowadays.

3 UFO Design

Within the scope of this paper, we put a restriction on
UFO: UFO does not try to fingerprint the real-mode OS-
es. We just simply report that the guest VM is operating
in real-mode if that is the case, without trying to dig fur-
ther. While this is a limitation of UFO, it is not a big
problem in reality, because most, if not all, modern OS-
es mainly function in protected mode to take advantage
of various features offered by Intel architecture.

3.1 Intel Protected Mode
Protected mode is an operational mode of Intel compati-
ble CPU, allowing system software to utilize features not
available in the obsolete real-mode, such as virtual mem-
ory, paging, etc..

Intel organizes system memory into segments, allow-
ing the OS to divide memory into logical blocks, plac-
ing in different memory regions. In protected mode,
each segment is represented by segment selector, seg-
ment base and segment limit. The segment selectors are
represented by six segment registers CS, DS, ES, FS, GS
and SS. All the segment information is stored inside a ta-
ble called Global Descriptor Table (GDT). The base and
limit of GDT are kept in GDTR register. When switch-
ing from real-mode to protected mode, OS must setup
the GDT, using the LGDT instruction.

Protected mode OS also needs to initialize the Inter-
rupt Descriptor Table (IDT), where put all the interrupt
handlers of the system. The position and limit of IDT are
kept in a register name IDTR, and IDT must be setup by
the LIDT instruction.

OS can manage its tasks with a register named Task
Register (TR). TR contains the segment selector of the
Task-State-Segment (TSS), where kept all the processor
state information of the current task. TR points to the
GDT, thus can also be represented by segment selector,
segment base and segment limit.

To provide strong isolation between privilege execu-
tion domains, Intel defines four rings of privilege: ring
0, ring 1, ring 2 and ring 3 (Typically, the OS kernel runs
at ring 0, and applications run at ring 3). At any moment,
the machine is functioning in only one of these rings.

An OS might use some special registers specific to
hardware, but supported in all the modern CPU, like MSR
EFER to control various features of the CPU, such as 64-
bit OS (to support 64-bit mode), fast-syscall (to enable
faster execution system call, using modern instructions
such as SYSENTER and SYSCALL), and non-executable
(also called NX in short, to allow marking of memory

pages as non-executable to prevent execution of mali-
cious data placed into stack or heap by an attacker). Each
of these features must be enabled by writing to the MSR
EFER with an instruction named WRMSR. Therefore we
can read the value of MSR-EFER to know if the OS sup-
ports these features or not.

Note that while 64-bit, fast-syscall and NX features
have been introduced for quite a long time, for a lot of
reasons, many OS-es have not supported them yet, or just
picked them up in recent versions.

3.2 OS Parameters
From the external point of view, an OS uses several facil-
ities, making a set of OS parameters, defined as follow-
ings.

• Segment parameters: each of six segment regis-
ters CS, DS, ES, FS, GS and SS is considered an
OS parameter. These segment parameters have fol-
lowing three attributes: segment selector, segment
base and segment limit, represented the selector, the
base and the limit of the segment, respectively.

Because at a moment, the machine is operating at
one of four ring levels of privilege, we need to clar-
ify the privilege of each segment parameter. We as-
sociate them with the ring level they are function-
ing in. For four ring levels, potentially with each
segment register we can have up to four possible
segment parameters. For example, with code seg-
ment CS, we have CS0, CS1, CS2, CS3 parameters,
respectively for ring 0, ring 1, ring 2, and ring 3.
Similarly, we have four set of segment parameters
for each of remaining segment registers DS, ES, FS,
GS and SS.

• TR parameter. The task register TR refers to a
segment, so similarly to segment registers above,
it consists of segment selector, and segment limit
attributes, represented the selector and limit of the
TSS segment, respectively.

Note that unlike segment registers, we do not con-
sider the segment base as an attribute of TR, be-
cause the TSS can locate anywhere in the memory,
thus its base does not represent the OS character.
Our experiments with various OS-es confirm this
fact.

• GDT parameter: The GDT can be located by the
its base and limit. However, similar to TR above, we
ignore the GDT base, and simplify this parameter
by having the limit as its only attribute.

• IDT parameter: Similarly to GDT, the IDT param-
eter has IDT limit as its only attribute.

3



• Feature parameters: we consider each of the fol-
lowing OS features a feature parameter: 64-bit (re-
flecting that the OS is 64-bit1), fast-syscall (reflect-
ing that the OS uses fast-syscall facility), and NX
(reflecting that the OS uses non-executable facility).
When present, these parameters reflect that the cor-
responding facilities are supported by the OS.

All these OS parameters of each guest VM can be re-
trieved from the VM’s context, thanks to the interface
provided by the hypervisor, usually come in the shape of
some APIs. These APIs can be executed from the host
VM.

3.3 UFO Fingerprinting Method

We observe that to some extent, the protected mode of In-
tel platform enforces no constraint on how the OS is im-
plemented, so the developers can freely design their OS
to their desire. Our UFO method relies on the fact that
most, if not all, modern OS-es spend very little time in
real-mode after booting up, then they all quickly switch
to protected mode, and mostly stay in this mode until
shutdown. After entering the protected mode, each OS
has different way to setup its low level facilities, such
as GDT and IDT table, how it uses its registers, and
whether or not it supports modern features like 64-bit,
fast-syscall, and NX. Indeed, we can see that the limits
of GDT and IDT tables, the value of segment registers
and special registers, like TR, are significantly different
between OS variants, and sometimes even between ver-
sions of the same OS. On the other words, each OS has
different OS parameters, defined above.

Below are several cases on how some OS-es setup
their OS parameters:

• Windows OS uses a GDT with the limit of 0x3FF,
while Linux 2.6 kernel has a GDT’s limit of 0xFF.
Minix setups its IDT’s limit of 0x3BF, but Plan9’s
IDT has the limit of 0x7FF.

• Sun Solaris uses selectors 0x158 and 0x16B for
its ring 0 and ring 3 code segments, respectively.
Meanwhile, Haiku uses selectors 0x8 and 0x1B for
its ring 0 and ring 3 code segments.

• The 32-bit version of OpenBSD does not use the
full address range for data segment like other OS-
es, but dedicates the last part of 4GB address space
for trapping security exploitation in W-xor-X tech-
nique. Therefore, its data segment of ring 3, rep-
resented by DS3 parameter, has the limit of 0xCF-
BFDFFF, rather than usual 0xFFFFFFFF.

1Without this feature, the OS is in 32-bit mode

• Neither NetBSD nor FreeBSD uses fast-syscall fea-
ture. Meanwhile Linux started to use that from 2.6
kernel version, and Windows only started to take
advantage of this feature from Windows XP.

• Windows only started to use NX feature from XP-
SP2. All the prior versions did not take advantage
of this modern facility.

The list of examples can go on, and it shows that the
OS parameters can represent an OS. Based on these de-
viation of the OS parameters, we can recognize the OS
variants, and even exact OS versions in various cases.
Because the OS parameters can identify the OS, we con-
sider the set of all parameters of an OS its OS signature,
or signature in short.

To perform fingerprinting, we have to prepare signa-
tures for all the OS-es we want to identify. We generate
a signature for each OS, and put them into a database of
signatures, called signature database. Then at run-time,
we retrieve the OS parameters from the target VM, using
hypervisor API discussed above, and match them against
each signature in the signature database, as followings:
we match each VM parameter against a corresponding
parameter in the signature. One OS parameter matches
the corresponding signature parameter if all of their at-
tributes match each other.

A special case must be handled regarding the segment
parameters: for each segment parameter, the correspond-
ing signature parameter is the segment parameter of the
ring level that the VM segment parameter is functioning
in. For example, with code segment parameter CS, if the
VM is operating in ring 0 at the time the OS parameters
are retrieved, we have to match it against the CS0 param-
eter in the OS signature. To be matched, all attributes (ie.
segment selector, segment base and segment limit) of the
VM’s CS parameter must match with corresponding at-
tributes of CS0 parameter in the signature.

Regarding the feature parameters (64-bit, fast-syscall
and NX) of the VM, a parameter is considered matched
if it contains the list of features of the signature.

Ideally, the fingerprinting process would return the ex-
act OS as the result. However, in fact we might not al-
ways find the definite answer, either due to missing sig-
nature of the related OS, or the OS has some special
customizations deviating its parameters from its signa-
ture. To deal with this problem, we propose a fuzzy fin-
gerprinting method: for each VM parameter matching
the corresponding parameter in a signature, we give it 1
point. Otherwise, we give it 0 point.

We conclude the matching process for each signature
by summing up all the points, and consider that the score
of this signature. We repeat the matching with all the
signatures in the database, and the signatures having the

4



highest score will be reported as the potential OS of the
VM.

We can see that in case we have the exact signature
of the VM, UFO will find that and report it as the 100%
matched signature, thus identify the 100% correct OS,
corresponding to that signature. More than one signature
that has 100% match score is possible, and all will be
reported.

In case the OS signature is either unavailable, or the
OS is customized to a particular extent, so that its signa-
ture is not 100% matched any more, this fuzzy matching
method can give a good guess on the OS by reporting the
best matched OS-es with highest scores.

The design of UFO solves the outstanding problems of
current OSF methods, and satisfy all of our six require-
ments proposed in section 2 above: (1) UFO can give
a very accurate answer on the VM’s OS. Experiments
shows that UFO always report the OS variant correctly.
The OS is also identified with details on OS version. (2)
We never rely on the content of OS code to recognize
the OS, so our method is independent of the compiler us-
ing to compile the OS. (3) Normal OS tweaking does not
change how OS uses its OS parameters, and in general,
OS has no option to affect their values, either. (4) Typ-
ically OS has no option to change the way it setups the
low level facilities such as OS parameters. Consequently,
while it is not impossible to modify these parameters, it is
not trivial to fool UFO. Indeed, all the available anti-OSF
solution do not work against UFO. (5) Because it takes
a very little time to retrieve OS parameters from the VM
and match them against the signature database, UFO is
extremely fast. Moreover, we never create any network
traffic like in network-based OSF approach, thus avoid-
ing the possible problem of wasting the network band-
width. (6) The way we generate the signatures and use
them to perform matching does not depend on the hy-
pervisors. Consequently, the same method and signature
database can be used for all kind of hypervisors, as long
as they provide the interface to retrieve the OS parame-
ters of the guest VM at run-time.

3.4 Generate OS signatures

An OS signature must include all the values of its param-
eters. A naive approach to gather all the possible param-
eters is to have a tool running in host VM, and this tool
periodically queries the targeted VM for its OS param-
eters. However, this solution has a major flaw: it is not
guaranteed that such an external tool can collect all the
possible values of all OS parameters, especially because
some parameter values only appear at a particular mo-
ment, in a particular condition, and in a very short time.
Even we can reduce the time interval of taking snapshot
at the guest VM, we can never be sure that no event is

missed.
To solve the above problem, we developed a method

to guarantee that we do not miss any OS parameters, as
long as it happens during the profiling time: We run the
target OS in a special system emulator, which is instru-
mented at the right places to inform us when the OS starts
to perform an activity that can generate a new value of a
particular OS parameter. Our emulator then captures the
new value, and records it for later processing. This pro-
filing process is done from when the OS boots up, enters
and processes in normal operating stage, until it is shut-
down later.

After the OS is shutdown, the instrumented emulator
processes all the collected OS parameters, then automat-
ically generates the signature for the OS. This profiling
process is repeated for all the OS variants and OS ver-
sions that we want UFO to be able to recognize, and
all the generated signatures are put into the signature
database.

This ”dummy” method of profiling OS to create its
signature offers a major advantage: it does not depend
on prior knowledge on particular OS, and it should work
blindly against all kind of OS-es, while requiring no un-
derstanding about the OS internals.

Because the OS behaves in the same way under
different hypervisors, our signatures are hypervisor-
independent, and can be reused by all the hypervisors.

4 Implementation

To generate the OS signatures, we have a tool to named
UFO-profiler. We implemented UFO-profiler based on
the QEMU emulator, version 0.11.1 [3]. QEMU is suit-
able because it supports all the facilities and features
such as 64-bit, fast-syscall and NX, like other hypervi-
sors. UFO-profiler instruments QEMU to record every
time the related OS parameters change their values. The
OS is run in UFO-profiler, and the profiling process starts
when the VM switches to protected mode, and ends when
the VM shutdowns. During the profiling, we run several
usual applications in the VM to simulate the production
systems, so we can trigger as much execution paths of
the OS as possible. The output data is then processed to
produce the ready-to-use signature.

On Intel platform, a lot of instructions and system
events can change the OS parameters, either by directly
modifying the OS parameters, or indirectly influencing
their values. Specifically, the following Intel instructions
are instrumented by UFO-profiler: mov, int, sysenter, sy-
sexit, syscall, sysret, jmp far, call far, lds, les, lfs, lgs,
lgdt, lidt, ltr, wrmsr, loadall, and iret.

Besides the above instructions, UFO-profiler must
also instrument to monitor some low level activities that
modifies OS parameters. The interested events are task

5



switching and interrupt handling: the task switching in-
volves a lot of operations that affect OS parameters, such
as loading the new selector into TR register, switch to
new segments in another privilege levels. Meanwhile,
the interrupt handling process leads to new values are
loaded into segment registers such as CS and SS.

QEMU dynamically translates all the instructions and
events, so UFO-profiler simply instruments at the right
places, when above instructions and events happen. At
that time, the new value of related OS parameters is
record, with all of its attributes. With all the saved pa-
rameters, we also record the time of the event, so we
know the relative time of every events since when we
start profiling the OS.

After the OS in the emulator is shutdown, the signa-
ture can be generated. It contains all the values of OS
parameters we saved, with repeated values eliminated.
The signature includes all the captured values of OS pa-
rameters, except the segment parameters: unlike other
parameters, segment parameters might have a lot of val-
ues, which results in a big signature. The reason is that
some segments might switch to different segment base,
or set different limits for different purposes. We reduce
the size of the segment parameters by combining them,
if the segment base or limit attributes of all the param-
eters share the same postfix. In that case, the postfix is
used to represent the attribute. For example, a base of
0x3F0BC0 and a base of 0X412BC0 share the postfix of
0XBC0. Combining segment attributes has another ben-
efit: the postifx can also match the segment attributes we
do not encounter at profiling time.

When profiling various OS-es to generate their signa-
tures, we observed that every OS must go through mul-
tiple steps of setup, until it reaches the stable stage. We
simply define the ”stable stage” the time when OS is al-
ready in normal operation mode, and from there it does
not change the setup of OS parameters such as GDT,
IDT and MSR-EFER anymore, or only change them for
its internal function, in special cases. Before reaching
stable stage, the OS is in unstable stage, in which they
may temporarily change the above parameters multiple
times. Typically, one OS takes very little time (5 sec-
onds in most cases, or no more than 20 seconds in all
of our experiments) to reach the stable stage. More im-
portantly, most of the time we fingerprint the OS, it is
already in stable stage. Therefore, including the OS pa-
rameters collected at the unstable stage in the signature
would create a lot of negative noises. This might make
our fingerprinting result less accurate, because UFO can
make mistake by using unstable parameters of other OS
when considering all the matching results.

For this reason, we separate the signature into two
parts: one includes only parameters of stable stage,
and the other includes the parameters of unstable stage.

When matching the OS parameters against the signature,
we report both results of matching stable and unstable
parameters. The users can decide what is the good re-
sult, because they might know which stage the OS is in
at that time. (For example, all the virtual machine man-
agement tools let administrator know how long their VM
already run).

We distinguish the parameters of stable and unstable
stage thanks to the time recorded with all the parameters,
as presented above. We simply define that parameters
recorded after 60 seconds from when we start profiling
the OS are stable, and all the parameters happened be-
fore that are of unstable stage. The time of 60 seconds is
chosen based on our experiments, which makes sure that
all the OS-es when profiling are already in stable mode
at that time. This number does not really matter, as long
as no stable parameters are missed during profiling.

The signature is presented in a JSON-like format [2],
so it is human-friendly, easy to understand and modify.
The database includes all the signatures in text format.
Figure 1 in the appendix shows a signature of the 32-bit
Linux kernel, version 2.6.31.x.

To prove that UFO is independent of hypervisors, we
implemented it for two hypervisors: Xen and Hyper-V.
The only difference between these two implementations
is the way to retrieve the OS parameters from guest VM.
Both Xen and Hyper-V provide interface to retrieve the
OS parameters ([11], [13]). UFO runs inside the host
VM, and retrieves the OS parameters from the targeted
VM via an appropriate hypervisor interface. It matches
these parameters against signatures using the matching
algorithm proposed in the section 3.3 above. A special
case is the feature parameters: UFO extracts the features
from the MSR-EFER register of the VM.

5 Evaluation

Evaluation against various OS-es available shows that
UFO is extremely fast: it takes around only 20 millisec-
onds to fingerprint the VM, regardless of OS. The time
spent includes the time to retrieve the OS parameter val-
ues from the VM, parsing the signature database, loading
them into the memory to prepare for matching step, and
match the OS parameters against all the signatures avail-
able in the memory.

So far, the signature database of contains 23 OS vari-
ants, ranging from popular OS such as Windows, Linux,
*BSD, Solaris, Plan9, Haiku,... to hobby and research
OS-es such as Syllabale, Aros, Minix, ReactOS, Plan9,
etc... A lot of versions of these OS-es are supported, too.
Totally, UFO succesfully recognizes around 50 OS ver-
sions.

In our experiments, UFO identifies the OS variant with
100% accuracy. If it cannot give out the exact OS ver-

6



sion, UFO can report a range of versions for the answer.
For example, because Linux kernels from version 2.6.22
to 2.6.29 are similar in their signatures, this range of ver-
sions will be reported.

In the case UFO cannot identify the OS due to the
missing signature, it can still give out the best match OS-
es, which has the highest score. In all of our experiments,
the answer is always the closest OS versions. For ex-
ample, UFO reports Windows Vista as an OS that best
matches with Windows XP-SP3. This is because Vista
matches 11 out of 12 parameters of Windows XP-SP3
signature, thus it is 91.66% similar to Windows XP-SP3.

6 Discussion

This paper handles the security threat as in cloud enviro-
ment: we assume that the hypervisor is secure, and can-
not be breached from inside the guest VM. Meanwhile,
the attacker might completely controls the guest, and can
employ some tricks to defeat UFO to make the finger-
printing result incorrect. For example, even if the OS
does not support NX feature, he can dynamically manip-
ulate the kernel to enable the flag in MSR EFER to fool
UFO. Ultimately, for the OS with source code available,
he can modify the code, recompiles then replace the ker-
nel to completely change all the OS parameters.

For the small modifications to the OS, UFO can still
give a hint about the OS thanks to its fuzzy detection,
which is close in many cases. However, it can be com-
pletely fooled on large scale modification. Unfortu-
nately, this problem is hard to fix due to the constraint
that we can only rely on the limited information collected
from outside, with available interface.

The other problem is that UFO is not always able to
give out the exact version of the OS: this happens be-
cause many OS versions do not change their parameters,
like in the Linux case above. We can fix this problem
by combining it with memory introspection method. In
principle, we can use UFO in preliminary phase to recog-
nize the OS variant, then confirm the exact version with
memory introspection. The later phase requires knowl-
edge about the OS internals, obviously.

7 Conclusions

UFO is a novel method of fingerprinting OS running in-
side VM. Being designed specifically for VM environ-
ment, UFO can quickly identify the OS variants and
OS versions with excellent accuracy. The approach is
hypervisor-independent, and the OS signatures of UFO
can be reused for all kind of hypervisors.

References

[1] Ext2 installable file system for windows. http:
//www.fs-driver.org.

[2] JSON scheme format. http://www.json.
org.

[3] F. Bellard. Qemu, a fast and portable dynamic
translator. In Proc. USENIX Annual Technical Con-
ference, FREENIX Track, 2005.

[4] M. Christodorescu, R. Sailer, D. L. Schales,
D. Sgandurra, and D. Zamboni. Cloud security is
not (just) virtualization security. In ACM workshop
on cloud computing security (CCSW), 2009.

[5] Fyodor. nmap - free security scanner for network
exploration and security audits. http://nmap.
org.

[6] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion detec-
tion. In Proc. Network and Distributed Systems Se-
curity Symposium, February 2003.

[7] R. W. Jones. Explore the windows reg-
istry with libguestfs. http://rwmj.
wordpress.com/2009/06/08/
explore-the-windows-registry-with-libguestfs.

[8] R. W. Jones. virt-inspector. http:
//libguestfs.org/virt-inspector.
1.html.

[9] Microsoft Corp. Windows server 2008 r2:
Virtualization with hyper-v. http://www.
microsoft.com/windowsserver2008/
en/us/hyperv-main.aspx.

[10] Microsoft Support. Virus alert about
win32/conficker worm. http://support.
microsoft.com/kb/962007.

[11] MSDN. Windows driver kit: Hyper-
visor hypervisor c-language functions.
http://msdn.microsoft.com/en-us/
library/bb969818.aspx.

[12] G. Prigent, F. Vichot, , and F. Harrouet. Ipmorph
: Fingerprinting spoofing unification. In Proc.
SSTIC, June 2009.

[13] Xen project. Xen interface. http://www.xen.
org/files/xen_interface.pdf.

[14] Xen project. Xen virtual machine monitor. http:
//www.xen.org.

7



[15] F. Yarochkin, O. Arkin, M. Kydyraliev, S.-Y. Dai,
Y. Huang, and S.-Y. Kuo. Xprobe2++: Low vol-
ume remote network information gathering tool.
In Proc. International Conference on Dependable
Systems and Networks, July 2009.

8



Appendix

An OS signature is put inside a pair of opening and closing parentheses. The numbers are in hexadecimal mode, and
each line denotes an OS parameter. All the text on the same line, after the sharp mark (#) is comment, and will be
ignored. Each parameter might have multiple values, all is put inside a pair of square brackets. For those parameters
having more than one attribute (like segment parameters, or TR), all the attributes of a value are also put inside another
pair of square brackets. The attributes of segment parameters are in the order of selector, base and limit. The attributes
of TR parameters are in the order of selector and limit. The postfix of segment attributes is represented with a ’*’
letter: in below example, segment GS in ring 3 (gs3 parameter) has the base of modulo 16, represented by the postfix
*0.

{ # Begin a signature with ’{’
name: Linux, # OS name
version: 2.6.31.x, # OS version
stable: { # Begin of stable parameters

idt: [7ff],
gdt: [ff],
tr: [[80, 206b]],
cs0: [[60, 0, ffffffff]],
cs3: [[73, 0, ffffffff]],
ds0: [[0, 0, ffffffff]],
ds3: [[7b, 0, ffffffff]],
es0: [[0, 0, ffffffff]],
es3: [[7b, 0, ffffffff]],
fs0: [[d8, *, ffffffff], [0, 0, 0]],
gs3: [[33, *0, ffffffff]],
ss0: [[68, 0, ffffffff]],
ss3: [[7b, 0, ffffffff]],
features: [nx, fast-syscall]

}, # End of stable parameters
unstable: { # Begin of unstable parameters

idt: [0, 3ff],
gdt: [30, 27, 1f],
cs0: [[10, 0, ffffffff]],
ss0: [[18, 0, ffffffff], [0, 0, ffffffff]]

} # End of unstable parameters
} # End a signature with ’}’

Figure 1: The signature of 32-bit Linux kernel, version 2.6.31.x

9


