
Outline
Introduction

Use of embedded devices
Case study

Conclusions

Embedded devices as an attack vector

Stephen Lewis
Stephen.Lewis@cl.cam.ac.uk

Computer Laboratory
University of Cambridge

21C3

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Outline

1 Introduction
Embedded devices
Threat model
Aims

2 Use of embedded devices
Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

3 Case study
Device features
Where to start
Tools and techniques
The network stack

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Embedded devices
Threat model
Aims

Embedded devices

Switches, printers, routers etc.

Proprietary OS

Small amount of RAM, NVRAM, FLASH

Management interface accessible using SNMP/telnet

No documentation: ‘closed’ devices

Not interested in larger devices (with ‘real’ OS)

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Embedded devices
Threat model
Aims

Threat model

Attacker has some access to the management interface of the
device over the network

This is realistic for a large number of devices

For example, consider a switch at the edge of a network (with
the management interface on the same VLAN as the users)

(But no exploits in the case study)

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Embedded devices
Threat model
Aims

Aims

Run own code on embedded devices without replacing original
functionality

The device should not become unstable (or crash!)

Understand enough of the networking code to send/receive
packets on management interface

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Traceability

Embedded devices are unlikely to keep useful logs

Nobody expects spoofed packets to originate from an
embedded device (e.g. an Ethernet switch)

At least with some devices, it is easy to make your code lie
dormant until you are long gone (hook into some kind of
interrupt/event handler)

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Detectability

With a lot of hard work, you can make yourself undetectable,
even on the device itself

Write your own custom firmware

Contains your attack code
Hides its own presence
Makes it impossible to re-flash with ‘good’ firmware

Some devices have a catch-all recovery mode in ROM, but
this might not be documented

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Starting off

In most cases, no technical documentation

Need to get (some) code off the device

Or maybe not: firmware image could be available
Firmware images can be difficult to decode: you don’t know
where various segments get mapped
Use (undocumented) debugging modes to dump memory

Architecture may be unfamiliar (case study 68k-based)

Very little (or no) prior knowledge about the memory map

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Your enemies

Dynamic memory allocation

Complex structures with lots of function pointers

Time-sensitive event handling code

Custom scripting languages

Proprietary filesystems

I/O buffering code

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Taking the device apart

This isn’t a hardware talk, but...

...you can gather a lot of useful information by just looking!

Get some idea of which memory devices/microprocessors are
present

Architectural hints (what’s done in ASICs/FPGAs/what’s left
to general purpose microprocessors)

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Documentation

Read whatever you can get your hands on

Make sure you know the features of the device well; this will
provide clues for how to proceed
Get hold of documentation for microprocessor/architecture of
the device

Write your own documentation too

It’s important to keep track of what you know, and refer back
to it when you get stuck

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

‘Local’ reverse engineering

Never underestimate the benefits of running code on the
device itself

Often much quicker than doing static analysis of memory
dumps

I/O functions on the device itself can be expensive

Build up an armoury of tools

Print out data structures you understand
Walk more complex structures (e.g. lists, tables)
Test out hypotheses about what various functions do

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Errors are good!

Spend some time working out what information you can
gather from getting into an error state

Some devices will have hardware/software watchdog timers
that will cause a reset

Try to find something giving you a post-mortem of the crash
(cf. hist command in case study)

Stack dumps
System error codes

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Why use embedded devices?
Why is using embedded devices hard?
Reverse engineering techniques

Health warning

It’s quite hard to cause permanent damage to these devices,
but...

Be careful what you do with the NVRAM

Especially if you don’t know where it is!

Careful preparation is necessary if you’re planning on rolling
your own firmware

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

3Com Switch 3300

All the usual features of an Ethernet switch

12/24 autosensing 10BASE-T/100BASE-TX ports

Services running

SNMP agent
Command line accessible via telnet (or serial port)
Web server
(also responds to ICMP ping)

Software upgrade via TFTP

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

The gory details

Motorola 68EC020 microprocessor (like 68020 but with 24-bit
address bus)

32 MiB RAM (I think!)

NVRAM, FLASH, small ROM

Approximately 5 MiB code (not including scripts)

Custom hardware for switching (e.g. fast look up table,
Ethernet PHYs)

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Getting a firmware image

Download from manufacturer

Not an ideal solution: probably no memory map, but...
...easy to do

Download from device

Need (undocumented) commands (run strings on
downloaded image, ‘ask’ manufacturer...)
Reveals memory map
Reading sensitive regions may cause problems

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Getting a firmware image

Select menu option: ?bug
Bug (q to return)> pre mem
Bug (q to return)> dump 0

00000000: 00 40 19 fc 00 00 [...] .@...... ...1.00.
00000010: ff ff ff ff 48 e7 [...]H... 2..Y.A..

All that’s left to do is script this...

...and wait, and wait, and wait

Make sure you handle errors gracefully

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Exploring undocumented commands

This device has lots of them

Two modes accessible from normal CLI

?bug
?debug

?bug mode gives access directly to hardware

?debug mode accesses a wider variety of commands, written
in scripting language

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Crash post mortem (with hist)

Gives reboot history, with reasons

Unknown, Power, Watchdog, Manual Reset, Defaults,
Stack Conflict, System Error, Over Temp., POST Reset,
S/W Upgrade, S/W Watchdog, Mini Upgrade, Assertion,
Serial Upgrade, Exception

Current value of stack pointer

Dump of stack frame

Other register values

Stack traceback (very useful)

Demo...

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Beginning disassembly

Stack trace can give a good starting point

Initially, we’re looking for some high-level I/O code

This isn’t too hard

...
cmpi.b #$25,var_D(a6) ; ’%’
...

Or just look for places where it’s called

...
move.l #$A0654,-(sp) ; " Empty\n" at 0xA0654
jsr sub_36794
...

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Running our own code

We know where the stack is

Manipulate return addresses to hook into control flow

Tools

Toolchain to target m68k (m68k-elf-as, m68k-elf-ld)
Appropriate linker script
Perl script to load code into device

Simple stuff, but it convinces us that we can execute code
from RAM, and that we’ve understood the stack layout

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Linker script

OUTPUT_FORMAT("srec")
OUTPUT_ARCH("m68k")
OUTPUT("3300.srec")

SECTIONS
{

. = 0x445000;

.text : { *(.text) }

.data : { *(.data) }
}

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

hello.s

.data
hello:
.ascii "Hello world!\n\0"
.set printf, 0x36794

.text
movem.l %a0-%a5/%d0-%d5,-(%sp)

move.l #hello,-(%sp) | Print test string
jsr printf
addq.l #0x4,%sp

movem.l (%sp)+,%a0-%a5/%d0-%d5
jmp 0x00036944

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

hello.srec

Run m68k-elf-as and m68k-elf-ld to get:

S00D000068656C6C6F2E7372656303
S21444500048E7FCFC2F3C0044501C4EB90003679410
S210445010588F4CDF3F3F4EF900036944C4
S21244501C48656C6C6F20776F726C64210A00D6
S80444500067

Does this really work?

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Other techniques

‘Local’ reverse engineering

Useful for, for example, searching the RAM
Or copying data structures and producing diffs
Make sure you code bounds checks on any pointers you follow!

Comparison across reboots

Finding references to string constants

Looking at statically allocated data structures

Code referenced in failed assertion handlers

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Problems with this device

Scripting language

Quite a lot of the functionality is implemented in the scripting
language
Appears to be some kind of runtime-interpreted bytecode
Interpreter is hard to understand
(But there is a ‘compiler’ on the device itself)

Function pointers fairly heavily used

Most memory is dynamically allocated: this means you have
to traverse data structures in order to reliably find things

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Plenty of starting points

Seach for own IP/MAC?

ARP tables?

Follow I/O code from high-level functions?

TCP/UDP checksum code?

Search for move.w #$17,d??

TCP connection control blocks?

TFTP code?

ICMP echo response?

Memory mapped I/O into the correct regions?

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

So it’s easy?

Yes, in that it’s easy to find the code and data structures,
but...

...no, because it’s very hard to understand enough code to
actually call any of these functions

Low down in the network stack, the structures used are
complex (lots of interdependencies between functions)

Higher in the stack, there’s not enough flexibility to send what
you want to send!

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Device features
Where to start
Tools and techniques
The network stack

Results

A large number of long-lived network data structures found

Short-lived ones are more problematic

There is an event handler in RAM(!), which seems to be
hooked into the control flow for incoming network packets

Most promisingly, can now fairly reliably create already-open
TCP connections

Basis of a simple port scanner here?

Can change MAC address of originated packets

Buffered incoming network packets seem to hang around for a
while: easy to capture if you know what you’re looking for

Stephen Lewis Embedded devices as an attack vector

Outline
Introduction

Use of embedded devices
Case study

Conclusions

Conclusions

Use of embedded devices as an attack vector is

difficult to detect
difficult to trace

On-device reverse-engineering is not a black art

Using existing functionality from your own code is hard, at
least in moderately complicated devices

Errors (with crash dumps) are good

Code will be at http://www.cl.cam.ac.uk/~srl32/21c3/
(but not yet!)

Stephen Lewis Embedded devices as an attack vector

	Outline
	Introduction
	Embedded devices
	Threat model
	Aims

	Use of embedded devices
	Why use embedded devices?
	Why is using embedded devices hard?
	Reverse engineering techniques

	Case study
	Device features
	Where to start
	Tools and techniques
	The network stack

	Conclusions

