
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Demystifying Network Cards

Paul Emmerich

December 27, 2017

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

About me

• PhD student at Technical University of Munich
• Researching performance of software packet processing systems
• Mostly working on my packet generator MoonGen

• Lightning talk about packet generators on Saturday

Paul Emmerich — Demystifying Network Cards 2

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

About me

• PhD student at Technical University of Munich
• Researching performance of software packet processing systems
• Mostly working on my packet generator MoonGen

• Lightning talk about packet generators on Saturday

Paul Emmerich — Demystifying Network Cards 2

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network Interface Card (NIC)

Paul Emmerich — Demystifying Network Cards 3

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network Interface Card (NIC)

Paul Emmerich — Demystifying Network Cards 4

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What I care about

1

2

3

4

5

6

7

Physical

Data Link

Network

⇠⇠⇠⇠Transport

⇠⇠⇠Session

(((((Presentation

((((Application

Paul Emmerich — Demystifying Network Cards 5

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Not all apps run on top of HTTP

Lots of network functionality is moving from specialized hardware to software:

• Routers
• (Virtual) Switches
• Firewalls
• Middleboxes

Buzzwords: Network Function Virtualization, Service Function Chaining

Paul Emmerich — Demystifying Network Cards 6

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Example application

NIC NIC NIC NIC

Server

Driver

Operating System

Firewall/Router/... Application

Paul Emmerich — Demystifying Network Cards 7

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Normal applications

NIC NIC NIC NIC

User Space

Kernel Space
Socket API

Driver

Operating System

Application

Paul Emmerich — Demystifying Network Cards 8

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What it really looks like

NIC NIC NIC NIC

User Space

Kernel Space

Here be dragons!

Driver DragonsDragons

Operating System

Application

Paul Emmerich — Demystifying Network Cards 9

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance

• Packets per second on a 10 Gbit/s link: up to 14.88 Mpps

• Packets per second on a 100 Gbit/s link: up to 148.8 Mpps
• Clock cycles per packet on a 3 GHz CPU with 14.88 Mpps: ¥ 200 cycles
• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding

Paul Emmerich — Demystifying Network Cards 10

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance

• Packets per second on a 10 Gbit/s link: up to 14.88 Mpps
• Packets per second on a 100 Gbit/s link: up to 148.8 Mpps

• Clock cycles per packet on a 3 GHz CPU with 14.88 Mpps: ¥ 200 cycles
• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding

Paul Emmerich — Demystifying Network Cards 10

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance

• Packets per second on a 10 Gbit/s link: up to 14.88 Mpps
• Packets per second on a 100 Gbit/s link: up to 148.8 Mpps
• Clock cycles per packet on a 3 GHz CPU with 14.88 Mpps: ¥ 200 cycles
• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding

Paul Emmerich — Demystifying Network Cards 10

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: User space app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to cross the user space boundary: very very long

• Single-core forwarding performance with sockets: ¥ 0.3 Mpps
• Single-core forwarding performance with libpcap: ¥ 1 Mpps

Paul Emmerich — Demystifying Network Cards 11

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: User space app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to cross the user space boundary: very very long

• Single-core forwarding performance with sockets: ¥ 0.3 Mpps
• Single-core forwarding performance with libpcap: ¥ 1 Mpps

Paul Emmerich — Demystifying Network Cards 11

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: User space app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to cross the user space boundary: very very long

• Single-core forwarding performance with sockets: ¥ 0.3 Mpps
• Single-core forwarding performance with libpcap: ¥ 1 Mpps

Paul Emmerich — Demystifying Network Cards 11

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Move the application into the kernel

NIC NIC NIC NIC

Kernel space

Driver

Operating System

Application

Paul Emmerich — Demystifying Network Cards 12

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Move the application into the kernel

New problems:

• Cumbersome to develop
• Usual kernel restrictions (e.g., C as programming language)
• Application can (and will) crash the kernel

Paul Emmerich — Demystifying Network Cards 13

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: Kernel app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in the Linux kernel: ¥ 500 cycles
• Time to send a packet in the Linux kernel: ¥ 440 cycles
• Time to allocate, initialize, and free a sk_buff in the Linux kernel: ¥ 400 cycles

• Single-core forwarding performance with Open vSwitch: ¥ 2 Mpps
• Hottest topic in the Linux kernel: XDP, which fixes some of these problems

Paul Emmerich — Demystifying Network Cards 14

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: Kernel app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in the Linux kernel: ¥ 500 cycles

• Time to send a packet in the Linux kernel: ¥ 440 cycles
• Time to allocate, initialize, and free a sk_buff in the Linux kernel: ¥ 400 cycles

• Single-core forwarding performance with Open vSwitch: ¥ 2 Mpps
• Hottest topic in the Linux kernel: XDP, which fixes some of these problems

Paul Emmerich — Demystifying Network Cards 14

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: Kernel app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in the Linux kernel: ¥ 500 cycles
• Time to send a packet in the Linux kernel: ¥ 440 cycles

• Time to allocate, initialize, and free a sk_buff in the Linux kernel: ¥ 400 cycles

• Single-core forwarding performance with Open vSwitch: ¥ 2 Mpps
• Hottest topic in the Linux kernel: XDP, which fixes some of these problems

Paul Emmerich — Demystifying Network Cards 14

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: Kernel app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in the Linux kernel: ¥ 500 cycles
• Time to send a packet in the Linux kernel: ¥ 440 cycles
• Time to allocate, initialize, and free a sk_buff in the Linux kernel: ¥ 400 cycles

• Single-core forwarding performance with Open vSwitch: ¥ 2 Mpps
• Hottest topic in the Linux kernel: XDP, which fixes some of these problems

Paul Emmerich — Demystifying Network Cards 14

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Performance: Kernel app

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in the Linux kernel: ¥ 500 cycles
• Time to send a packet in the Linux kernel: ¥ 440 cycles
• Time to allocate, initialize, and free a sk_buff in the Linux kernel: ¥ 400 cycles

• Single-core forwarding performance with Open vSwitch: ¥ 2 Mpps
• Hottest topic in the Linux kernel: XDP, which fixes some of these problems

Paul Emmerich — Demystifying Network Cards 14

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Do more in user space?

NIC NIC NIC NIC

User Space

Kernel Space
Control API

Driver

Magic Kernel Module

Magic Library

Application

OS

mmap’ed
Memory

mmap’ed
Memory

Paul Emmerich — Demystifying Network Cards 15

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

User space packet processing frameworks

Examples for such frameworks

• netmap
• PF_RING ZC
• pfq

Paul Emmerich — Demystifying Network Cards 16

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Problems

• Non-standard API, custom kernel module required
• Most frameworks require patched drivers
• Exclusive access to the NIC for one application
• No access to the usual kernel features

• Limited support for kernel integration in netmap
• Poor support for hardware offloading features of NICs
• Framework needs explicit support for each NIC, limited to a few NICs

Paul Emmerich — Demystifying Network Cards 17

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Do even more in user space?

NIC NIC NIC NIC

User Space

Kernel Space

mmap’ed
BAR0

Application

OS

DMA
Memory

Packets

Paul Emmerich — Demystifying Network Cards 18

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

User space driver frameworks

Examples for such frameworks

• DPDK
• Snabb

Paul Emmerich — Demystifying Network Cards 19

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Problems

• Non-standard API
• Exclusive access to the NIC for one application
• Framework needs explicit support for each NIC model

• DPDK supports virtually all Ø 10 Gbit/s NICs
• Limited support for interrupts

• Interrupts not considered useful at Ø 0.1 Mpps
• No access to the usual kernel features

Paul Emmerich — Demystifying Network Cards 20

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What has the kernel ever done for us?

• Lots of mature drivers

• Protocol implementations that actually work (TCP, ...)
• Interrupts (NAPI is quite nice)
• Stable user space APIs
• Access for multiple applications at the same time
• Firewalling, routing, eBPF, XDP, ...
• ...and more

Paul Emmerich — Demystifying Network Cards 21

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What has the kernel ever done for us?

• Lots of mature drivers
• Protocol implementations that actually work (TCP, ...)

• Interrupts (NAPI is quite nice)
• Stable user space APIs
• Access for multiple applications at the same time
• Firewalling, routing, eBPF, XDP, ...
• ...and more

Paul Emmerich — Demystifying Network Cards 21

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What has the kernel ever done for us?

• Lots of mature drivers
• Protocol implementations that actually work (TCP, ...)
• Interrupts (NAPI is quite nice)
• Stable user space APIs
• Access for multiple applications at the same time
• Firewalling, routing, eBPF, XDP, ...
• ...and more

Paul Emmerich — Demystifying Network Cards 21

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Are these frameworks fast?

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in DPDK: ¥ 50 cycles
• Time to send a packet in DPDK: ¥ 50 cycles
• Other user space frameworks play in the same league

• Single-core forwarding with Open vSwitch on DPDK: ¥ 13 Mpps (2 Mpps without)
• Performance gains from: batching (typically 16 to 64 packets/batch), reduced

memory overhead (no sk_buff)

Paul Emmerich — Demystifying Network Cards 22

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Are these frameworks fast?

• Typical performance target: ¥ 5 to 10 Mpps per CPU core for simple forwarding
• 5 to 10 Mpps = 300 to 600 cycles per packet at 3 GHz

• Time to receive a packet in DPDK: ¥ 50 cycles
• Time to send a packet in DPDK: ¥ 50 cycles
• Other user space frameworks play in the same league

• Single-core forwarding with Open vSwitch on DPDK: ¥ 13 Mpps (2 Mpps without)
• Performance gains from: batching (typically 16 to 64 packets/batch), reduced

memory overhead (no sk_buff)

Paul Emmerich — Demystifying Network Cards 22

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Usage

Lots of packet processing apps have support for DPDK today:

• Open vSwitch
• Vyatta
• Juniper’s vMX
• Cisco’s VPP
• pfSense (soon)

Main reasons: performance and control over hardware features

Paul Emmerich — Demystifying Network Cards 23

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Can we build our own user space driver?

Sure, but why?

• For fun ⇠⇠⇠⇠⇠and profit
• To understand how NIC drivers work
• To understand how user space packet processing frameworks work

• Many people see these frameworks as magic black boxes
• DPDK drivers: Ø 20k lines of code per driver

• How hard can it be?
• Turns out it’s quite easy, I’ve written my driver Ixy in less than 1000 lines of C

Paul Emmerich — Demystifying Network Cards 24

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Hardware: Intel ixgbe family (10 Gbit/s)

• ixgbe family: 82599ES (aka X520), X540, X550, Xeon D embedded NIC
• Commonly found in servers or as on-board chips
• Very good datasheet publicly available
• Almost no logic hidden behind black-box firmware

Paul Emmerich — Demystifying Network Cards 25

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

How to build a full user space driver in 4 simple steps

1. Unload kernel driver
2. mmap the PCIe MMIO address space
3. Figure out physical addresses for DMA
4. Write the driver

Paul Emmerich — Demystifying Network Cards 26

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Find the device we want to use

lspci
03:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...
03:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...

Paul Emmerich — Demystifying Network Cards 27

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Find the device we want to use

lspci
03:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...
03:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ ...

Paul Emmerich — Demystifying Network Cards 28

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Unload the kernel driver

echo 0000:03:00.1 > /sys/bus/pci/devices/0000:03:00.1/driver/unbind

Paul Emmerich — Demystifying Network Cards 29

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

mmap the PCIe configuration address space from user space

int fd = open("/sys/bus/pci/devices/0000:03:00.0/resource0", O_RDWR);
struct stat stat;
fstat(fd, &stat);
uint8_t* registers = (uint8_t*) mmap(NULL, stat.st_size, PROT_READ | PROT_WRITE,

MAP_SHARED, fd, 0);

Paul Emmerich — Demystifying Network Cards 30

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Device registers

Paul Emmerich — Demystifying Network Cards 31

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Access registers: LEDs

#define LEDCTL 0x00200
#define LED0_BLINK_OFFS 7

uint32_t leds = *((volatile uint32_t*)(registers + LEDCTL));
((volatile uint32_t)(registers + LEDCTL)) = leds | (1 << LED0_BLINK_OFFS);

• Memory-mapped IO: all memory accesses go directly to the NIC
• One of the very few valid uses of volatile in C

Paul Emmerich — Demystifying Network Cards 32

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

How are packets handled?

• Packets are transferred via DMA (Direct Memory Access)
• DMA transfer is initiated by the NIC

• Packets are transferred via queue interfaces (often called rings)
• NICs have multiple receive and transmit queues

• Modern NICs have 128 to 768 queues
• This is how NICs scale to multiple CPU cores
• Similar queues are also used in GPUs and NVMe disks

Paul Emmerich — Demystifying Network Cards 33

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Rings/Queues

• Specific to ixgbe, but most NICs are similar
• Rings are circular buffers filled with DMA descriptors

• DMA descriptors are 16 bytes: 8 byte physical pointer, 8 byte metadata
• Translate virtual addresses to physical addresses using /proc/self/pagemap

• Queue of DMA descriptors is accessed via DMA
• Queue index pointers (head & tail) available via registers for synchronization

Paul Emmerich — Demystifying Network Cards 34

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Rings/Queues

• Specific to ixgbe, but most NICs are similar
• Rings are circular buffers filled with DMA descriptors

• DMA descriptors are 16 bytes: 8 byte physical pointer, 8 byte metadata
• Translate virtual addresses to physical addresses using /proc/self/pagemap

• Queue of DMA descriptors is accessed via DMA
• Queue index pointers (head & tail) available via registers for synchronization

Paul Emmerich — Demystifying Network Cards 34

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Ring memory layout

Physical
Memory

2 KB...

Memory PoolDescriptor Ring

ixgbe_adv_rx_desc.pkt_addr

16
 b

yt
e

Paul Emmerich — Demystifying Network Cards 35

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Setting up a receive ring
#define RING_ENTRIES 512
size_t ring_size = RING_ENTRIES * sizeof(struct dma_desc);
struct dma_desc* ring_mem = (struct dma_desc*) malloc(ring_size);
set_reg(RDBAL_0, virt2phy(ring_mem)); // dma descriptor ring location
set_reg(RDBAH_0, virt2phy(ring_mem >> 32)); // dma descriptor ring location
set_reg(RDLEN_0, ring_size); // dma descriptor size
for (int i = 0; i < RING_ENTRIES; i++) {

ring_mem[i].dma_ptr = malloc(2048); // NIC will store packet here
}
set_reg(RDH_0, 0); // head pointer
set_reg(RDT_0, RING_ENTRIES); // tail pointer: rx ring starts out full

(Simplified, can’t use malloc() because the memory needs to be physically contiguous, real code uses
hugetlbfs) Paul Emmerich — Demystifying Network Cards 36

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Receiving packets

• NIC writes a packet via DMA and increments the head pointer
• NIC also sets a status flag in the DMA descriptor once it’s done

• Checking the status flag is way faster than reading the MMIO-mapped RDH register

• Periodically poll the status flag
• Process the packet
• Reset the DMA descriptor, allocate a new packet or recycle
• Adjust tail pointer (RDT) register

Paul Emmerich — Demystifying Network Cards 37

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Receiving packets

• NIC writes a packet via DMA and increments the head pointer
• NIC also sets a status flag in the DMA descriptor once it’s done

• Checking the status flag is way faster than reading the MMIO-mapped RDH register
• Periodically poll the status flag
• Process the packet
• Reset the DMA descriptor, allocate a new packet or recycle
• Adjust tail pointer (RDT) register

Paul Emmerich — Demystifying Network Cards 37

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What now?

• Transmit rings work the same way
• There’s also a lot of boring initialization code in Ixy

Ideas for things to test with Ixy

• Performance: why are these frameworks faster than the Kernel?
• Obscure hardware/offloading features
• Security features: what about the IOMMU?
• Other NICs, other programming languages

Paul Emmerich — Demystifying Network Cards 38

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

What now?

• Transmit rings work the same way
• There’s also a lot of boring initialization code in Ixy

Ideas for things to test with Ixy

• Performance: why are these frameworks faster than the Kernel?
• Obscure hardware/offloading features
• Security features: what about the IOMMU?
• Other NICs, other programming languages

Paul Emmerich — Demystifying Network Cards 38

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Conclusion: Check out ixy

• Check out ixy on GitHub: https://github.com/emmericp/ixy (BSD license)
• Æ 1000 lines of C code for the full framework

• C is the lowest common denominator of programming languages
• Drivers are simple: don’t be afraid of them. You can write them in any language!
• No kernel code needed :)

Paul Emmerich — Demystifying Network Cards 39

https://github.com/emmericp/ixy

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Backup slides

Backup Slides

Paul Emmerich — Demystifying Network Cards 40

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Linux kernel: past, present, and future

Past

• Linux 2.4 suffered from problems when moving to 1 Gbit/s networks
• One interrupt per packet, servers live-locking under interrupt load

Present

• Linux 2.6 added NAPI
• Dynamic disabling of interrupts, batched receiving
• Lots of optimizations in the socket API

Paul Emmerich — Demystifying Network Cards 41

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Linux kernel: past, present, and future

Present/Future

• Hottest Linux networking feature: eXpress Data Path (XDP)
• Run packet processing code in a fast path in the kernel using eBPF programs

• Restrictions apply, typically programmed in a restricted subset of C
• Good integration with the kernel

• Ideal for firewall applications for user space programs on the same host

• Requires driver support (new memory model) and exclusive NIC access
• DPDK supports more NICs than XDP (as of Kernel 4.15)
• Work-in-progress, still lacks many features

Paul Emmerich — Demystifying Network Cards 42

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Linux kernel: past, present, and future

Present/Future

• Hottest Linux networking feature: eXpress Data Path (XDP)
• Run packet processing code in a fast path in the kernel using eBPF programs

• Restrictions apply, typically programmed in a restricted subset of C
• Good integration with the kernel

• Ideal for firewall applications for user space programs on the same host
• Requires driver support (new memory model) and exclusive NIC access
• DPDK supports more NICs than XDP (as of Kernel 4.15)
• Work-in-progress, still lacks many features

Paul Emmerich — Demystifying Network Cards 42

