Implementing an LLVM
based Dynamic Binary
Instrumentation framework

R TS B R B BN RO .

6.-_.‘) '-_ - N el .4 ':. -E::‘- < \‘\‘"\

. o BN CER BNE B @B A7

RS R B BN B RO r '-’.J-. REA

NN SR TN RN ARSI G AR
R R RS

SNy A SNM f/

Q' ' a r I(S lE Charles Hubain

Ceédric Tessier
SECURING EVERY BIT OF YOUR DATA

Introduction to
Instrumentation

What is Instrumentation?

 “Iransformation of a program into its own measurement tool”
 Observe any state of a program anytime during runtime

 Automate the data collection and processing

Use Cases

* Finding memory bugs:
e Track memory allocations / deallocations

e Track memory accesses

* Fuzzing:
* Measure code coverage

* Build symbolic representation of code

* Recording execution traces
* Replay them for “timeless” debugging

* Software side-channel attacks against crypto

“Why not ... debuggers?”

e Debuggers are awesome but slooooooooow

Resume Schedule

Signal +
Debugger schedule Trap interrupt
< N

34c3 - Implementing an LLVM based DBI framework

[haxelion@elarion]~/documents/QB/esiea_ese_2017/demo % python attack_gdb.py

python attack_pin.py

[haxelion@elarion]~/documents/QB/esiea_ese_2017/demo % python attack_pin.py
d 2201228
B

https://asciinema.org/a/17nynlopg5a18e1qps3r9ou7g

“Why not ... debuggers?”

e Debuggers are awesome but slooooooooow

Resume Schedule

Signal +
Debugger schedule Trap interrupt
< N

e Solution? Get rid of the kernel

e How? Run the instrumentation inside the target

34c3 - Implementing an LLVM based DBI framework

Instrumentation Techniques

e From sou cO

e Manually,

oW ... prin‘B@RING

e Atcom

* From binary:

e Static binary patching & hooking x Crude and barbaric

 Dynamic Binary Instrumentation

34c3 - Implementing an LLVM based DBI framework

Existing Frameworks

e Valgrind since 2000

e Open source, only *nix platforms, very complex

e DynamoRIO since 2002

e Open source, cross-platforms, very raw

e [ntel Pin since 2004

e (Closed source, only Intel platforms, user friendly

10

“Why we made our own”

e Cross-platform and cross-architecture
e Mobile and embedded targets support
e Simpler and modular design

e Focus on “heavy” instrumentation

Introduction to DBI

Dynamic Binary
Instrumentation

e Dynamically insert the instrumentation at runtime

: Generate
Disassemble Instrumentation Insert Execute

e ™ 8

PAC-MAN
for scale

12 34c3 - Implementing an LLVM based DBI framework

13

Disassembling

 What part of the binary is the code is unknown

= Disassembling the whole binary in advance is
impossible

* \We need to discover the code as we go

14

Code Discovery

e How?
e Execute a block of code
e Discover where the execution flow after the block

e Execute the next block of code

 This forms a short execution cycle

15

* The instrumented code is larger than
the original code

* Binaries are usually tightly packed with
little free space

= The instrumentation cannot be
Inserted in-place

= |t needs to be “relocated”

FALSE

No Free Space

Instruction
Instruction
Instruction

COND JUMP &

Instruction
Instruction
Instruction

JUMP

Instruction

Instruction
Instruction

JUMP

16

Relocating

 Code contains relative reference to memory addresses
* These become invalid once we move the code

* We need to completely rewrite the code to fix those
references

= This is what we call “patching”

17

The “Cycle of Life”

- \

Execute - Disassemble
Assemble Patch
Instrument

34c3 - Implementing an LLVM based DBI framework

Designing a DBI:

1. Low Level Abstractions

19

Instruction
Instruction
Instruction

Instruction
Instruction
Instruction

Instruction
Instruction
Instruction

Instruction
Instruction
Instruction

- --

20

Control

A4

Instruction
Instruction
Instruction

Instruction
Instruction
Instruction

Instruction
Instruction
Instruction

Instruction
Instruction
Instruction

v

34c3 - Implementing an LLVM based DBI framework

Under Control Flow

\
Guest § Host
\
\
\
nstruction §
Instruction §
Instruction §
N
\
n—— \
)
%
\
Instruction §
Instruction
Instruction

JUMP

Instruction
Instruction
Instruction

Instruction
Instruction e
Instruction Pis

34c3 - Implementing an LLVM based DBI framework

7777727722224

22

Under Control

DBl is all about keeping control of the execution

23

Under Control

e Keeping control of the execution
* requires modifying original instructions...

e ...without modifying original behaviour

24

What We Need

e A multi-architecture disassembler
e A multi-architecture assembler

* A generic intermediate representation to apply
modifications on

25

We Don't Want

* Jo implement a multi-architecture disassembler and
assembler

* Jo abstract every single instruction semantic

e Architectures Developer Manuals are not that fun...

20

Here Be Dragons

This has nothing to do with 26C3

Bleeding Edge Compiler Technology

34c3 - Implementing an LLVM based DBI framework

27

To the rescue

e | LVM already has everything
e |t supports all major architectures
* |t provides a disassembler and an assembler...

e ...and both work on the same intermediate
representation

e | LVM Machine Code (aka MC) to the rescue

28

Instruction

Binary

LLVM MC

LLVM MC

rax, 42

[0x48,0x89,0x04,0x25,0x2a,0x00,0x00,0x00]

$

<MClinst #1670
<MCOperand Reg:0>
<MCOperand Imm:1>
<MCOperand Reg:0>
<MCOperand Imm:42>
<MCOperand Reg:0>
<MCOperand Reg:35>>

29

LLVM MC

e [t's minimalist
* |t’s totally generic

» still encodes a lot of things about an instruction
 But very raw

* generichess means some heavy compromises

* doesn’t encode everything about an instruction

Creation

Every instruction is encoded using the same representation...

... but in a different way <MClnst #1139

<MCOperand Reg:41>
<MCOperand Imm:1>
<MCOperand Reg:0>
<MCOperand Imm:0x2600>
<MCOperand Reg:0>
<MCOperand Reg:35>>

[rip+0x2600], rax

31

Modification

0x41424242

<MClinst #1141
<MCOperand Imm: 0x41424242>>

[rip+0x2600]

<MCinst #1139
<MCOperand Reg:41>
<MCOperand Imm:1>
<MCOperand Reg:0>
<MCOperand Imm:0x2600>
<MCOperand Reg:0>>

32

Patch

0x410000: mov rO, [rO+pc]

; Load a value relative to PC

33

Ox7110000:

Patch

mov [pc+0x2600], r1
mov r1, 0x410000

mov r0,

mov r1,

r0+r1]

pc+0x2600]

; Backup R1

; Set original instruction address

; Load a value relative to R1

; Restore R1

34

Abstractions

* MClInst encoding make transformations painful
 Patches can be really complex

* Many transformations are composed of generic steps

» we need abstractions

35

Patch Engine

Abstractions Inside™

34c3 - Implementing an LLVM based DBI framework

@006

y 0
_ a3
89
3k
0 g
N
“a— AVAE AEE mome P -
e EESIUG WY, . og
, . e

PN
4

/

Ve |

2

36

37

Patch DSL

e |dentify transformation steps required to patch instructions
 Regroup and integrate them as a domain-specific language
* |nstructions are architecture specifics...

e ...DSL should be generic (as much as possible)

38

Patch DSL

Program QBDI
> X
+ -OPY
n
5, Reg Temp
()
o Q
o 0y
n —
O %
o ©
> —
O Shadows,
GE) Context Metadata
=

34c3 -

Implementing an LLVM based DBI framework

39

Patch DSL

mov [pc+0x2600], r1i
mov r1, 0x410000

...]

mov r1, [pc+0x2600]

+ Temp(0)

34c3 - Implementing an LLVM based DBI framework

40

Patch DSL

mov [pc+0x2600], r1
mov r1, 0x410000

mov rO, [rO+r1]

)

mov r1, [pc+0x2600]

SubstituteWithTemp(Reg(REG_PC), Temp(0))

34c3 - Implementing an LLVM based DBI framework

41

Patch DSL

 Modifications are defined in rules
e Aruleis composed of

* one (or several) condition(s)

* one (or several) action(s)

e Actions can modify or replace an instruction

42

Patch DSL

/* Rule #3: Generic RIP patching.
* Target: Any instruction with RIP as operand, e.g. LEA RAX, [RIP + 1]
* Patch: Temp(0) :=rip

- LEA RAX, [RIP + IMM] --> LEA RAX, [Temp(0) + IMM]
*/
PatchRule(
UseReg(Reg(REG_PCQC)),
{
GetPCOffset(Temp(©), Constant(®)),
Modifylnstruction({
SubstituteWithTemp(Reg(REG_PC), Temp(©))
})
}

34c3 - Implementing an LLVM based DBI framework

Patch DSL

/* Rule #0: Simulating BX instructions.
* Target: BX REG
* Patch: Temp(0) := Operand(0)
* DataOffset[Offset(PC)] := Temp(0)
*/
PatchRule(
Or({
Opls(llvm::ARM::BX),
Opls(llvm::ARM::BX_pred)
hE

GetOperand(Temp(©), Operand()),
WriteTemp(Temp(), Offset(Reg(REG_PCQ)))

}
);

44

Lessons Learned

 LLVM provides robust foundations for modifying binary
code

 Abstractions on top of it are:

e vital to make quite a simple intermediate
representation do complex things

e very (very) hard to conceptualise

Designing a DBI:
2. Cross-Architecture Support

46

Process

Host and Guest

DBI Engine Original Binary

Instrumentation Tool Instrumented Code

34c3 - Implementing an LLVM based DBI framework

47

Context Switch

They share the same memory and the same CPU
context

We need to switch between those two contexts at every
cycle

No help from the kernel or the CPU

48

Context Switch

 Save / restore CPU context from guest / host

* Avoid any side effects on the guest
e We can’t modify its stack

e We can’t erase any register

= \\e need to relatively address host memory from the
guest

49

Relative Addressing

 Constrained by CPU architecture capabilities

e [imited to +/- 4096 under ARM

= \\/e need host memory next to guest code
* We want to play nice with Data Execution Prevention

= Allocate 2 contiguous memory pages:

e Code block in Read eXecute

e Data block in Read Write

50

ExecBlock

Code Block RX

Prologue

Instrumented Code

Epilogue

Data Block RW

Guest Context

Host Context

34c3 - Implementing an LLVM based DBI framework

51

ExecBlock

 Bind instrumented code and instrumentation data
e Data is guaranteed to be directly addressable

4 KB pages give us a lot of space...

* We can put multiple instrumented basic blocks in the code
block

* \We can put more than just context in the data block

52

Things Got More Complex ...

Code Block RX

Prologue
JIMP

_
‘ Basic Block 0
Basic Block 1 ‘
=

Epilogue

Data Block RW

Guest Context

Host Context

Constants & Shadows

34c3 - Implementing an LLVM based DBI framework

53

Making 4K Useful

Instrumentation constants

e used in the same way as ARM'’s literal pool

Instruction shadows
e “instruction analog” to Valgrind's memory shadow
e |nstrumentation variable abstraction

e can be used to record memory accesses

54

What We Need

e A cross-platform memory management abstraction
e allocating memory pages

e changing page permissions

* A cross-architecture assembler working in-memory

e |t’s not just about building binary objects in-memory

55

Guess What?

o s—

34c3 - Implementing an LLVM based DBI framework

56

LLVM JIT

e LLVM already has several JIT engine
e They are very well designed...
e ...but none of them fitted our strict constraints
* |LLVM provides everything to create a custom one
e cross-architecture memory management abstraction

e powerful in-memory assembler (LLVM MC)

57

Lessons learned

e LLVM is perfect for creating a JIT

* Designing a JIT engine for DBI is hard

* Really easy to make a design locked down on a particular CPU
architecture

 Portability need to be taken into account from the start

58

QBDI

QuarkslaB Dynamic binary Instrumentation is a modular,
cross-platform and cross-architecture DBI framework

e Linux, macOS, Windows, Android and iOS

e User friendly
e easy to use C/C++ APIs
* extensive documentation
e binary packages for all major OS

e Modular design (Unix philosophy)

59

QBDI

* Modularity stands for:
e core only provides what is essential
e don’t force users to do thing in your way
* easy integration everywhere

* Fun and flexible Python bindings

e Full featured integration with Frida

60

Roadmap

 Improve ARM architecture support
e Thumb-2
e Memory Access information
e ARMvS8 (AArch64)
e Add SIMD memory access
 Multithreading and exceptions

e probably not as part of the core engine (KISS)

Demo time!

62

pyQBDI

import pygbdi;

def

def

printInstruction(vm, gpr, fpr, data):
inst = vm.getInstAnalysis()
print "0x%x %$s" % (inst.address, inst.disassembly)

return pygbdi.CONTINUE

pygbdipreload on run(vm, start, stop):

state = vm.getGPRState()

success, addr = pygbdi.allocateVirtualStack(state, 0x100000)
funcPtr = ctypes.cast(alib.aFunction, ctypes.c void p).value
vin.addInstrumentedModuleFromAddr (funcPtr)

vm.addCodeCB (pygbdi.PREINST, printInstruction, None)

vm.call (funcPtr, [42])

34c3 - Implementing an LLVM based DBI framework

63

Frida / QBDI

frida --enable-jit -1 /usr/local/share/qbdi/frida-gbdi.js ./demo.bin

/ Frida 10.6.26 - A world-class dynamic instrumentation framework
|l
> _ | Commands:
/_/ | _] help -> Displays the help system
object? -> Display information about 'object'

exit/quit -> Exit

More info at http://www.frida.re/docs/home/

Spawned " ./demo.bin’.

[Local::demo.bin]->
undefined
[Local::demo.bin]->
undefined
[Local: :demo.bin]->
true

[Local: :demo.bin]->

var vm =

var state

Use %resume to let the main thread start executing!

new QBDI()

vm.getGPRState()

vim.addInstrumentedModule("demo.bin")

34c3 - Implementing an LLVM based DBI framework

Give it a try

e https://gbdi.quarkslab.com/

e https://github.com/quarkslab/QBDI
e Free software under permissive license (Apache 2)
e All suggestions / pull requests are most welcome

e #gbdi on freenode

Many thanks to Paul and djo for their major contributions to this release!

https://qbdi.quarkslab.com/
https://github.com/quarkslab/QBDI

Any questions?

